コード例 #1
0
 def test_model(self):
     utils.validate_fit_event_struct(self.fit_event, self)
     transformer = self.fit_event.model
     self.assertEqual(self.fit_event.featureColumns, ['A', 'B', 'C', 'D'])
     expected_transformer = modeldb_types.Transformer(
         -1, 'LinearRegression', 'linear reg')
     utils.is_equal_transformer(transformer, expected_transformer, self)
コード例 #2
0
ファイル: testMetricEvent.py プロジェクト: tspannhw/modeldb
    def test_events(self):
        # There should be 3 FitEvents and 3 MetricEvents
        self.assertEqual(len(self.events), 6)

        # Validate fit and metric event structs
        for i in range(0, 5, 2):
            utils.validate_fit_event_struct(self.events[i], self)
            utils.validate_metric_event_struct(self.events[i + 1], self)
コード例 #3
0
    def test_overall_pipeline_fit_event(self):
        fit_event = self.pipeline_event.pipelineFit
        utils.validate_fit_event_struct(fit_event, self)
        transformer = fit_event.model
        expected_transformer = modeldb_types.Transformer(
            -1,
            'Pipeline',
            'pipeline with pca + logistic')
        utils.is_equal_transformer(transformer, expected_transformer, self)

        df = fit_event.df
        expected_df = modeldb_types.DataFrame(
            -1,
            [
                modeldb_types.DataFrameColumn('A', 'int64'),
                modeldb_types.DataFrameColumn('B', 'int64'),
            ],
            100,
            'digits-dataset')
        utils.is_equal_dataframe(df, expected_df, self)

        spec = fit_event.spec
        expected_spec = modeldb_types.TransformerSpec(
            -1,
            'Pipeline',
            [
                modeldb_types.HyperParameter(
                    'logistic__n_jobs', '1', 'int', FMIN, FMAX),
                modeldb_types.HyperParameter(
                    'pca__copy', 'True', 'bool', FMIN, FMAX),
                modeldb_types.HyperParameter(
                    'pca__n_components', 'None', 'NoneType', FMIN, FMAX),
                modeldb_types.HyperParameter(
                    'logistic__fit_intercept', 'True', 'bool', FMIN, FMAX),
                modeldb_types.HyperParameter(
                    'pca__whiten', 'False', 'bool', FMIN, FMAX),
                modeldb_types.HyperParameter(
                    'steps', "[('pca', PCA(copy=True, n_components=None, whiten=False)), ('logistic', LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False))]", 'list', FMIN, FMAX),
                modeldb_types.HyperParameter(
                    'logistic', 'LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)', 'LinearRegression', FMIN, FMAX),
                modeldb_types.HyperParameter(
                    'pca', 'PCA(copy=True, n_components=None, whiten=False)', 'PCA', FMIN, FMAX),
                modeldb_types.HyperParameter(
                    'logistic__normalize', 'False', 'bool', FMIN, FMAX),
                modeldb_types.HyperParameter(
                    'logistic__copy_X', 'True', 'bool', FMIN, FMAX)
            ],
            'pipeline with pca + logistic')
        utils.is_equal_transformer_spec(spec, expected_spec, self)

        self.assertItemsEqual(fit_event.featureColumns, ['A', 'B'])