def main(): model = Baseline(num_classes=702, last_stride=1, model_path=' ', stn='no', model_name='resnet50_ibn_a', pretrain_choice=' ') model.load_param('models/resnet50_ibn_a/duke_resnet50_ibn_a_model.pth') model.to(device) model.eval() feats = [] with torch.no_grad(): img1 = process_img( '/home/zzg/Datasets/DukeReiD/DukeMTMC-reID/query/0033_c1_f0057706.jpg' ) feat1 = model(img1) feats.append(feat1) img2 = process_img( '/home/zzg/Datasets/DukeReiD/DukeMTMC-reID/query/0033_c6_f0045755.jpg' ) feat2 = model(img2) feats.append(feat2) img3 = process_img( '/home/zzg/Datasets/DukeReiD/DukeMTMC-reID/query/0034_c2_f0057453.jpg' ) feat3 = model(img3) feats.append(feat3) feats = torch.cat(feats, dim=0) feats = torch.nn.functional.normalize(feats, dim=1, p=2) dist = euclidean_dist_rank(feats, feats) print(dist)
def main(): model = Baseline(num_classes=702, last_stride=1, model_path=' ', stn='no', model_name='resnet50_ibn_a', pretrain_choice=' ') model.load_param('models/resnet50_ibn_a/duke_resnet50_ibn_a_model.pth') model.to(device) model.eval() feats = [] with torch.no_grad(): img1 = process_img( '/nfs4/ajaym/Downloads/Ranked_Person_ReID-master/demo_data/1.jpg') feat1 = model(img1) feats.append(feat1) img2 = process_img( '/nfs4/ajaym/Downloads/Ranked_Person_ReID-master/demo_data/2.jpg') feat2 = model(img2) feats.append(feat2) img3 = process_img( '/nfs4/ajaym/Downloads/Ranked_Person_ReID-master/demo_data/3.jpg') feat3 = model(img3) feats.append(feat3) feats = torch.cat(feats, dim=0) feats = torch.nn.functional.normalize(feats, dim=1, p=2) dist = euclidean_dist_rank(feats, feats) print(dist)