コード例 #1
0
  def test_network_invocation(self, output_range, out_seq_len):
    hidden_size = 32
    sequence_length = 21
    vocab_size = 57
    num_types = 7
    # Create a small TransformerEncoder for testing.
    test_network = transformer_encoder.TransformerEncoder(
        vocab_size=vocab_size,
        hidden_size=hidden_size,
        sequence_length=sequence_length,
        num_attention_heads=2,
        num_layers=3,
        type_vocab_size=num_types,
        output_range=output_range)
    self.assertTrue(
        test_network._position_embedding_layer._use_dynamic_slicing)
    # Create the inputs (note that the first dimension is implicit).
    word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    type_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    data, pooled = test_network([word_ids, mask, type_ids])

    # Create a model based off of this network:
    model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled])

    # Invoke the model. We can't validate the output data here (the model is too
    # complex) but this will catch structural runtime errors.
    batch_size = 3
    word_id_data = np.random.randint(
        vocab_size, size=(batch_size, sequence_length))
    mask_data = np.random.randint(2, size=(batch_size, sequence_length))
    type_id_data = np.random.randint(
        num_types, size=(batch_size, sequence_length))
    _ = model.predict([word_id_data, mask_data, type_id_data])

    # Creates a TransformerEncoder with max_sequence_length != sequence_length
    max_sequence_length = 128
    test_network = transformer_encoder.TransformerEncoder(
        vocab_size=vocab_size,
        hidden_size=hidden_size,
        sequence_length=sequence_length,
        max_sequence_length=max_sequence_length,
        num_attention_heads=2,
        num_layers=3,
        type_vocab_size=num_types)
    self.assertTrue(test_network._position_embedding_layer._use_dynamic_slicing)
    model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled])
    outputs = model.predict([word_id_data, mask_data, type_id_data])
    self.assertEqual(outputs[0].shape[1], out_seq_len)
コード例 #2
0
  def test_network_creation_with_float16_dtype(self):
    hidden_size = 32
    sequence_length = 21
    tf.keras.mixed_precision.experimental.set_policy("mixed_float16")
    # Create a small TransformerEncoder for testing.
    test_network = transformer_encoder.TransformerEncoder(
        vocab_size=100,
        hidden_size=hidden_size,
        sequence_length=sequence_length,
        num_attention_heads=2,
        num_layers=3)
    # Create the inputs (note that the first dimension is implicit).
    word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    type_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    data, pooled = test_network([word_ids, mask, type_ids])

    expected_data_shape = [None, sequence_length, hidden_size]
    expected_pooled_shape = [None, hidden_size]
    self.assertAllEqual(expected_data_shape, data.shape.as_list())
    self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list())

    # If float_dtype is set to float16, the data output is float32 (from a layer
    # norm) and pool output should be float16.
    self.assertAllEqual(tf.float32, data.dtype)
    self.assertAllEqual(tf.float16, pooled.dtype)
コード例 #3
0
  def test_all_encoder_outputs_network_creation(self):
    hidden_size = 32
    sequence_length = 21
    # Create a small TransformerEncoder for testing.
    test_network = transformer_encoder.TransformerEncoder(
        vocab_size=100,
        hidden_size=hidden_size,
        sequence_length=sequence_length,
        num_attention_heads=2,
        num_layers=3,
        return_all_encoder_outputs=True)
    # Create the inputs (note that the first dimension is implicit).
    word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    type_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    all_encoder_outputs, pooled = test_network([word_ids, mask, type_ids])

    expected_data_shape = [None, sequence_length, hidden_size]
    expected_pooled_shape = [None, hidden_size]
    self.assertLen(all_encoder_outputs, 3)
    for data in all_encoder_outputs:
      self.assertAllEqual(expected_data_shape, data.shape.as_list())
    self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list())

    # The default output dtype is float32.
    self.assertAllEqual(tf.float32, all_encoder_outputs[-1].dtype)
    self.assertAllEqual(tf.float32, pooled.dtype)
コード例 #4
0
    def create_network(self,
                       vocab_size,
                       sequence_length,
                       hidden_size,
                       num_predictions,
                       output='predictions',
                       xformer_stack=None):
        # First, create a transformer stack that we can use to get the LM's
        # vocabulary weight.
        if xformer_stack is None:
            xformer_stack = transformer_encoder.TransformerEncoder(
                vocab_size=vocab_size,
                num_layers=1,
                sequence_length=sequence_length,
                hidden_size=hidden_size,
                num_attention_heads=4,
            )
        word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        lm_outputs, _ = xformer_stack([word_ids, mask, type_ids])

        # Create a maskedLM from the transformer stack.
        test_network = masked_lm.MaskedLM(num_predictions=num_predictions,
                                          input_width=lm_outputs.shape[-1],
                                          source_network=xformer_stack,
                                          output=output)
        return test_network
コード例 #5
0
  def test_serialize_deserialize(self):
    tf.keras.mixed_precision.experimental.set_policy("mixed_float16")
    # Create a network object that sets all of its config options.
    kwargs = dict(
        vocab_size=100,
        hidden_size=32,
        num_layers=3,
        num_attention_heads=2,
        sequence_length=21,
        max_sequence_length=21,
        type_vocab_size=12,
        intermediate_size=1223,
        activation="relu",
        dropout_rate=0.05,
        attention_dropout_rate=0.22,
        initializer="glorot_uniform",
        return_all_encoder_outputs=False,
        output_range=-1)
    network = transformer_encoder.TransformerEncoder(**kwargs)

    expected_config = dict(kwargs)
    expected_config["activation"] = tf.keras.activations.serialize(
        tf.keras.activations.get(expected_config["activation"]))
    expected_config["initializer"] = tf.keras.initializers.serialize(
        tf.keras.initializers.get(expected_config["initializer"]))
    self.assertEqual(network.get_config(), expected_config)

    # Create another network object from the first object's config.
    new_network = transformer_encoder.TransformerEncoder.from_config(
        network.get_config())

    # Validate that the config can be forced to JSON.
    _ = new_network.to_json()

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(network.get_config(), new_network.get_config())
コード例 #6
0
    def test_network_invocation_with_external_logits(self):
        vocab_size = 100
        sequence_length = 32
        hidden_size = 64
        num_predictions = 21
        xformer_stack = transformer_encoder.TransformerEncoder(
            vocab_size=vocab_size,
            num_layers=1,
            sequence_length=sequence_length,
            hidden_size=hidden_size,
            num_attention_heads=4,
        )
        test_network = self.create_network(vocab_size=vocab_size,
                                           sequence_length=sequence_length,
                                           hidden_size=hidden_size,
                                           num_predictions=num_predictions,
                                           xformer_stack=xformer_stack,
                                           output='predictions')
        logit_network = self.create_network(vocab_size=vocab_size,
                                            sequence_length=sequence_length,
                                            hidden_size=hidden_size,
                                            num_predictions=num_predictions,
                                            xformer_stack=xformer_stack,
                                            output='logits')
        logit_network.set_weights(test_network.get_weights())

        # Create a model from the masked LM layer.
        lm_input_tensor = tf.keras.Input(shape=(sequence_length, hidden_size))
        masked_lm_positions = tf.keras.Input(shape=(num_predictions, ),
                                             dtype=tf.int32)
        output = test_network([lm_input_tensor, masked_lm_positions])
        logit_output = logit_network([lm_input_tensor, masked_lm_positions])

        model = tf.keras.Model([lm_input_tensor, masked_lm_positions], output)
        logits_model = tf.keras.Model(([lm_input_tensor, masked_lm_positions]),
                                      logit_output)

        # Invoke the masked LM on some fake data to make sure there are no runtime
        # errors in the code.
        batch_size = 3
        lm_input_data = 10 * np.random.random_sample(
            (batch_size, sequence_length, hidden_size))
        masked_position_data = np.random.randint(2,
                                                 size=(batch_size,
                                                       num_predictions))
        outputs = model.predict([lm_input_data, masked_position_data])
        logits = logits_model.predict([lm_input_data, masked_position_data])

        # Ensure that the tensor shapes are correct.
        expected_output_shape = (batch_size, num_predictions, vocab_size)
        self.assertEqual(expected_output_shape, outputs.shape)
        self.assertEqual(expected_output_shape, logits.shape)

        # Ensure that the logits, when softmaxed, create the outputs.
        input_tensor = tf.keras.Input(expected_output_shape[1:])
        output_tensor = tf.keras.layers.Activation(
            tf.nn.log_softmax)(input_tensor)
        softmax_model = tf.keras.Model(input_tensor, output_tensor)

        calculated_softmax = softmax_model.predict(logits)
        self.assertAllClose(outputs, calculated_softmax)