コード例 #1
0
ファイル: mutate_traj_tpr.py プロジェクト: rochoa85/g_mmpbsa
	def refine(atmsel):
		# at T=1000, max_atom_shift for 4fs is cca 0.15 A.
		md = molecular_dynamics(cap_atom_shift=0.39, md_time_step=4.0, md_return='FINAL')
		init_vel = True
		for (its, equil, temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)), (200, 600, (1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))):
			for temp in temps:
				md.optimize(atmsel, init_velocities=init_vel, temperature=temp, max_iterations=its, equilibrate=equil)
		init_vel = False
コード例 #2
0
def Optimizemodel(pdb_file):
    """
	This functions returns a file with the optimized model from the input pdb. 
	It also returns the energies. 
	"""

    env = environ()
    env.io.atom_files_directory = ['../atom_files']
    env.edat.dynamic_sphere = True

    env.libs.topology.read(file='$(LIB)/top_heav.lib')
    env.libs.parameters.read(file='$(LIB)/par.lib')

    code, ext = pdb_file.split('.')
    mdl = complete_pdb(env, pdb_file)
    mdl.write(file=code + '.ini')

    # Select all atoms:
    atmsel = selection(mdl)
    mpdf2 = atmsel.energy()
    # Generate the restraints:
    #mdl.restraints.make(atmsel, restraint_type='improper', spline_on_site=False)
    #mdl.restraints.make(atmsel, restraint_type='bond', spline_on_site=False)
    #mdl.restraints.make(atmsel, restraint_type='sphere', spline_on_site=False)
    mdl.restraints.make(atmsel, restraint_type='stereo', spline_on_site=False)
    mdl.restraints.write(file=code + '.rsr')

    mpdf1 = atmsel.energy()

    # Create optimizer objects and set defaults for all further optimizations
    cg = conjugate_gradients(output='REPORT')
    md = molecular_dynamics(output='REPORT')

    # Open a file to get basic stats on each optimization
    trcfil = open(code + '.D00000001', 'w')

    # Run CG on the all-atom selection; write stats every 5 steps
    cg.optimize(atmsel, max_iterations=20, actions=actions.trace(5, trcfil))
    # Run MD; write out a PDB structure (called '1fas.D9999xxxx.pdb') every
    # 10 steps during the run, and write stats every 10 steps
    md.optimize(atmsel,
                temperature=300,
                max_iterations=50,
                actions=[
                    actions.write_structure(10, code + '.D9999%04d.pdb'),
                    actions.trace(10, trcfil)
                ])
    #refine(atmsel, code, trcfil)
    # Finish off with some more CG, and write stats every 5 steps
    cg.optimize(atmsel, max_iterations=20, actions=[actions.trace(5, trcfil)])

    mpdf = atmsel.energy()

    print("The initial energy of " + code + " is " + str(mpdf1[0]))
    print("The final energy of " + code + " is " + str(mpdf[0]))
    print("The final energy of " + code + " is " + str(mpdf2[0]))

    mdl.write(file=code + '_optimized.pdb')
コード例 #3
0
def refine(atmsel):
    # at T=1000, max_atom_shift for 4fs is cca 0.15 A.
    md = molecular_dynamics(cap_atom_shift=0.39, md_time_step=4.0,
                            md_return='FINAL')
    init_vel = True
    for (its, equil, temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)),
                                (200, 600,
                                 (1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))):
        for temp in temps:
            md.optimize(atmsel, init_velocities=init_vel, temperature=temp,
                         max_iterations=its, equilibrate=equil)
            init_vel = False
コード例 #4
0
def Optimizemodel(pdb_file, optimize):
    print("Calculating the energy of the model...")
    output_path_optimized = "/".join(pdb_file.split('/')[:-1])
    sys.stdout = open(os.devnull, 'w')
    env = environ()
    env.io.atom_files_directory = ['../atom_files']
    env.edat.dynamic_sphere = True
    env.libs.topology.read(file='$(LIB)/top_heav.lib')
    env.libs.parameters.read(file='$(LIB)/par.lib')
    filename = pdb_file.split("/")[-1]
    code = filename.split('.')[0]
    mdl = complete_pdb(env, pdb_file)
    mdl.write(file=output_path_optimized + "/" + code + '.ini')
    # Select all atoms:
    atmsel = selection(mdl)
    mpdf2 = atmsel.energy()
    sys.stdout = sys.__stdout__
    if optimize:
        print('Optimizing the model...')
        sys.stdout = open(os.devnull, 'w')
        # Generate the restraints:
        mdl.restraints.make(atmsel,
                            restraint_type='stereo',
                            spline_on_site=False)
        mdl.restraints.write(file=output_path_optimized + "/" + code + '.rsr')

        # Create optimizer objects and set defaults for all further optimizations
        cg = conjugate_gradients(output='REPORT')
        md = molecular_dynamics(output='REPORT')

        # Run CG on the all-atom selection
        cg.optimize(atmsel, max_iterations=20)
        # Run MD
        md.optimize(atmsel, temperature=300, max_iterations=50)
        # Finish off with some more CG
        cg.optimize(atmsel, max_iterations=20)

        mpdf = atmsel.energy()

        # Create .pdb
        mdl.write(file=output_path_optimized + "/" + code + '_optimized.pdb')

        # Remove interdmediate files
        os.remove(output_path_optimized + "/" + code + ".ini")
        os.remove(output_path_optimized + "/" + code + ".rsr")
        sys.stdout = sys.__stdout__
        return mpdf2[0], mpdf[0]

    else:
        os.remove(output_path_optimized + "/" + code + '.ini')
        return mpdf2[0]
コード例 #5
0
def sgmdrefine(atmsel, actions, cap, timestep, equil_its, equil_equil,
           equil_temps, sampl_its, sampl_equil, sampl_temps):
    from modeller.optimizers import molecular_dynamics

    mdl = atmsel.get_model()
    md = molecular_dynamics(cap_atom_shift=cap, md_time_step=timestep,
                            md_return='FINAL', output=mdl.optimize_output,
                            actions=actions,friction=0,guide_factor=0,guide_time=0)
    init_vel = True
    # First run for equilibration, the second for sampling:
    for (its, equil, temps) in ((equil_its, equil_equil, equil_temps),(sampl_its, sampl_equil, sampl_temps)):
        for temp in temps:
            md.optimize(atmsel, max_iterations=its, equilibrate=equil,
                        temperature=temp, init_velocities=init_vel)
            init_vel=False
コード例 #6
0
def optimize(directory, number):
    log.none()
    env = environ()
    env.io.atom_files_directory = ['../atom_files']
    env.edat.dynamic_sphere = True

    env.libs.topology.read(file='$(LIB)/top_heav.lib')
    env.libs.parameters.read(file='$(LIB)/par.lib')

    filename = directory + "/model_" + str(number) + ".pdb"
    #read model files
    code = directory + "/model_" + str(number)
    mdl = complete_pdb(env, filename)

    # Select all atoms:
    atmsel = selection(mdl)

    # Generate the restraints:
    mdl.restraints.make(atmsel, restraint_type='stereo', spline_on_site=False)

    # Create optimizer objects and set defaults for all further optimizations
    cg = conjugate_gradients(output='NO_REPORT')
    md = molecular_dynamics(output='NO_REPORT')

    if not os.path.exists(directory + '/optimization_stats'):
        os.makedirs(directory + '/optimization_stats')

    # Open a file to get basic stats on each optimization
    trcfil = open(
        directory + '/optimization_stats/model_' + str(number) + '.D00000001',
        'w')

    # Run CG on the all-atom selection; write stats every 5 steps
    cg.optimize(atmsel, max_iterations=20, actions=actions.trace(5, trcfil))
    # Run MD; write out a PDB structure (called '1fas.D9999xxxx.pdb') every
    # 10 steps during the run, and write stats every 10 steps
    md.optimize(atmsel,
                temperature=300,
                max_iterations=50,
                actions=[actions.trace(10, trcfil)])
    # Finish off with some more CG, and write stats every 5 steps
    cg.optimize(atmsel, max_iterations=20, actions=[actions.trace(5, trcfil)])

    #mpdf = atmsel.energy()

    mdl.write(file=code + '.pdb')
コード例 #7
0
def optimize(pdb, pdb_path):
    print(1, pdb_path)
    # Environ data
    env = environ(0)
    env.io.atom_files_directory = ['../atom_files']
    env.edat.dynamic_sphere = True
    
    env.libs.topology.read(file='$(LIB)/top_heav.lib')
    env.libs.parameters.read(file='$(LIB)/par.lib')
    
    code = pdb.split('.')[0] 
    mdl = complete_pdb(env, pdb)
    mdl.write(file=code+'.ini')
    
    # Select all atoms:
    atmsel = selection(mdl)
    
    # Generate the restraints:
    mdl.restraints.make(atmsel, restraint_type='stereo', spline_on_site=False)
    mdl.restraints.write(file=code+'.rsr')
    
    mpdf_prior = atmsel.energy()
    
    # Create optimizer objects and set defaults for all further optimizations
    cg = conjugate_gradients(output='REPORT')
    md = molecular_dynamics(output='REPORT')
    
    # Open a file to get basic stats on each optimization
    trcfil = open(code+'.D00000001', 'w')
    
    # Run CG on the all-atom selection; write stats every 5 steps
    cg.optimize(atmsel, max_iterations=20, actions=actions.trace(5, trcfil))
    # Run MD; write out a PDB structure (called '1fas.D9999xxxx.pdb') every
    # 10 steps during the run, and write stats every 10 steps
    md.optimize(atmsel, temperature=300, max_iterations=50,
                actions=[actions.write_structure(10, code+'.D9999%04d.pdb'),
                         actions.trace(10, trcfil)])
    # Finish off with some more CG, and write stats every 5 steps
    cg.optimize(atmsel, max_iterations=20,
                actions=[actions.trace(5, trcfil)])
    
    mpdf_after = atmsel.energy()
    
    mdl.write(file=os.path.join(pdb_path, 'optimized.pdb'))
    return (mpdf_prior, mpdf_after)
コード例 #8
0
def refine(atmsel):
    # at T=1000, max_atom_shift for 4fs is cca 0.15 A.
    md = molecular_dynamics(
        cap_atom_shift=0.39,
        md_time_step=
        4.0,  ## cap_atom_shifts limita a distância (A) de movimento ao longo de um eixo
        md_return='FINAL'
    )  ## estrutura final pode não ser a mínima de toda a trajectória - 'MINIMAL'
    init_vel = True
    for (its, equil,
         temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)),
                    (200, 600, (1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))):
        for temp in temps:
            md.optimize(
                atmsel,
                init_velocities=init_vel,
                temperature=temp,
                max_iterations=its,
                equilibrate=equil
            )  ## equilibrate = re-escalonamento das velocidades após equil passos (200 < 600???)
            init_vel = False  ## usa as mesmas velocidades da corrida anterior
コード例 #9
0
code = '1fas'
mdl = complete_pdb(env, code)
mdl.write(file=code+'.ini')

# Select all atoms:
atmsel = selection(mdl)

# Generate the restraints:
mdl.restraints.make(atmsel, restraint_type='stereo', spline_on_site=False)
mdl.restraints.write(file=code+'.rsr')

mpdf = atmsel.energy()

# Create optimizer objects and set defaults for all further optimizations
cg = conjugate_gradients(output='REPORT')
md = molecular_dynamics(output='REPORT')

# Open a file to get basic stats on each optimization
trcfil = file(code+'.D00000001', 'w')

# Run CG on the all-atom selection; write stats every 5 steps
cg.optimize(atmsel, max_iterations=20, actions=actions.trace(5, trcfil))
# Run MD; write out a PDB structure (called '1fas.D9999xxxx.pdb') every
# 10 steps during the run, and write stats every 10 steps
md.optimize(atmsel, temperature=300, max_iterations=50,
            actions=[actions.write_structure(10, code+'.D9999%04d.pdb'),
                     actions.trace(10, trcfil)])
# Finish off with some more CG, and write stats every 5 steps
cg.optimize(atmsel, max_iterations=20,
            actions=[actions.trace(5, trcfil)])
コード例 #10
0
        dih_lib_only=True)
mdl.restraints.make(all_atoms, aln=aln,
       restraint_type='PHI_DIHEDRAL',spline_on_site=True,
        dih_lib_only=True)
mdl.restraints.make(all_atoms, aln=aln,
       restraint_type='PSI_DIHEDRAL',spline_on_site=True,
        dih_lib_only=True)
mdl.restraints.condense()

# energy data
env.edat.dynamic_lennard = True


# Prepare optimizer
scaling_factors = physical.values(default=1.0, em_density=0)
MD =  molecular_dynamics(output='REPORT',cap_atom_shift=0.0001,
              md_time_step=0.05,temperature=params.temperature,
                        init_velocities=True,md_return=params.md_return,
                        equilibrate = params.equilibrate,
                       schedule_scale=scaling_factors)
w=actions.write_structure(params.skip_its_for_writing, 'md-%03d.pdb',
            write_all_atoms=True, first=True, last=True, start=0)
# optimize
MD.optimize(all_atoms, max_iterations=params.max_iterations,actions=[w])

for c in mdl.chains:
    c.name = 'A'
mdl.remark =""
mdl.reorder_atoms()
mdl.write(params.output_pdb_file, model_format='PDB')
コード例 #11
0

# Generate two copies of a segment:
mdl = complete_pdb(env, '2abx', model_segment=('1:A', '74:B'))
mdl.rename_segments(segment_ids=('A', 'B'), renumber_residues=(1, 1))

myedat = energy_data(dynamic_sphere=False)
atmsel = selection(mdl)
atmsel.energy(edat=myedat)
atmsel.randomize_xyz(deviation=6.0)
# Define the two segments (chains in this case) to be identical:
defsym(mdl, seg1=('1:A', '74:A'), seg2=('1:B', '74:B'))

# Create optimizer objects
cg = conjugate_gradients()
md = molecular_dynamics(md_return='FINAL')

# Make them identical by optimizing the initial randomized structure
# without any other restraints:
atmsel.energy(edat=myedat)
mdl.write(file='define_symmetry-1.atm')
cg.optimize(atmsel, max_iterations=300, edat=myedat)
mdl.write(file='define_symmetry-2.atm')
atmsel.energy(edat=myedat)

# Now optimize with stereochemical restraints so that the
# result is not so distorted a structure (still distorted
# because optimization is not thorough):
myedat.dynamic_sphere = True
mdl.restraints.make(atmsel,
                    restraint_type='stereo',
コード例 #12
0
ファイル: MD.py プロジェクト: andreyto/imp-fork-proddl
    def run(self):
        int_seed=randint(0,2**8)
        env = environ(rand_seed=int_seed)
        env.libs.topology.read(file='$(LIB)/top_heav.lib')
        env.libs.parameters.read(file='$(LIB)/par.lib')

        ###################### reading the density ######################
        den = density(env, file=self.path + '/' + self.em_map_file,
                 em_density_format=self.format, em_map_size=self.box_size,
                 density_type='GAUSS', voxel_size=self.apix,
                 resolution=self.res,px=self.x,py=self.y,pz=self.z)

        env.edat.density = den
        env.edat.dynamic_sphere = True

        ###################### read pdb file ######################
        aln = alignment(env)
        mdl2 = model(env, file=self.input_pdb_file)
        aln.append_model(mdl2, align_codes=self.input_pdb_file,
                   atom_files=self.input_pdb_file)
        mdl = model(env, file=self.input_pdb_file)
        aln.append_model(mdl, align_codes=self.code, atom_files=self.code)
        aln.align(gap_penalties_1d=(-600, -400))
        mdl.clear_topology()
        mdl.generate_topology(aln[self.input_pdb_file])
        mdl.transfer_xyz(aln)
        mdl.build(initialize_xyz=False, build_method='INTERNAL_COORDINATES')

        ####################### Remove chain names ######################
        for c in mdl.chains:
            c.name = ' '
        mdl.write(file=self.code+'_ini.pdb')

        ###################### Select the mobile atoms ######################
        sel_all = selection(mdl)
        sel_fixed=[]
        if(self.fixed_filename!=''):
            # read the list of fixed residues
            read_selection_list(self.path,mdl,sel_fixed,self.fixed_filename)
        # select the non fixed, those ones that are going to be optimized
        mobile_atoms = []
        for n in sel_all:
            mobile =True
            for m in sel_fixed:
                if n in m:
                    mobile=False
                    break
            if mobile:
                mobile_atoms.append(n)
#        print "mobile atom ..",n
        print "number of mobile atoms ..",len(mobile_atoms)
        sel_mobile=selection(mobile_atoms) # selection of mobile residues

        ###################### RESTRAINTS FOR MOBILE ATOMS ############
        # STEREOCHEMICAL restraints (based on the model)
        mdl.restraints.make(sel_mobile, restraint_type='STEREO',
                                            spline_on_site=False)
        # MAINCHAIN homology restraints forcing to look in the library
        # (dih_lib_only = True) and ignore the template.
        mdl.restraints.make(sel_mobile, aln=aln,
               restraint_type='PHI-PSI_BINORMAL',spline_on_site=True,
                dih_lib_only=True)
        mdl.restraints.make(sel_mobile, aln=aln,
               restraint_type='OMEGA_DIHEDRAL',spline_on_site=True,
                dih_lib_only=True)
        # SIDECHAIN homology restraints forcing to look in the library
        # (dih_lib_only = True) and ignore the template.
        mdl.restraints.make(sel_mobile, aln=aln,
               restraint_type='CHI1_DIHEDRAL',spline_on_site=True,
                dih_lib_only=True)
        mdl.restraints.make(sel_mobile, aln=aln,
               restraint_type='CHI2_DIHEDRAL',spline_on_site=True,
                dih_lib_only=True)



        ###################### define rigid bodies ######################
        sel_rigid=[]
        rand_rigid=[]
        if(self.rigid_filename != ''):
            load_rigid(self.path,mdl,sel_rigid,rand_rigid,self.rigid_filename)
        for n in sel_rigid:
            include_it=True
            # Only add not fixed rigid bodies. Adding fixed ones is superfluous
            for m in sel_fixed:
                if(n in m):
                    include_it=False
                    break
            if(include_it):
                print "Considering rigid body ...",n
#        for at in n:
#          print "atom ...",at
                mdl.restraints.rigid_bodies.append(rigid_body(n))
        # Remove duplicated restraints
        mdl.restraints.unpick_redundant()
        # Write all the restraints to a file
        mdl.restraints.write(file=self.code+'.rsr')

        ###################### MOLECULAR DYNAMICS ANNEALING ################
        print "MD annealing"
        scal_for_annealing = physical.values(default=1.0, em_density=10000)
        cap=0.39
        timestep=5.0
        icount=0
        trc_file = open('MD'+self.run_num+'.trc', "a")
        ###################### loop for number of cycles
        a,b = 1,self.cycles
        while  a <= b:
            equil_its=self.equil_its_for_heating
            equil_equil=20
            equil_temps= self.equil_temps_for_heating
            trc_step=5
            init_vel = True
            # during heating simulations, FINAL structure is always returned.
            # If the MINIMAL would be returned, no heating would be achieved.
            MD =  molecular_dynamics(cap_atom_shift=cap, md_time_step=timestep,
                               md_return='FINAL', output='REPORT',
                               schedule_scale=scal_for_annealing)

            ###################### heating the system
            for (its, equil, temps) in [(equil_its, equil_equil, equil_temps)]:
                for temp in temps:
                    # optimize the mobile atoms
                    MD.optimize(sel_mobile, max_iterations=its,
                      temperature=temp, init_velocities=init_vel,
                      equilibrate=equil,
                      actions=[actions.trace(trc_step,trc_file)])
                    # print progress
                    scal = physical.values(default=0.0, em_density=1.0)
                    (molpdf, terms) = sel_all.energy(schedule_scale=scal)
                    print "HEATING: iteration number= %s  step= %d %d  "\
                    "temp= %d  EM score= %.3f" %(a,icount,its,int(temp),-molpdf)

                    icount=icount+equil_its
                init_vel=False

            ###################### cooling the system
            equil_its=self.equil_its_for_cooling
            equil_temps= self.equil_temps_for_cooling
            # during the cooling MD simulations the structure returned can be
            # FINAL or MINIMAL acording to the option selected
            MD =  molecular_dynamics(cap_atom_shift=cap, md_time_step=timestep,
                             md_return=self.md_return, output='REPORT',
                             schedule_scale=scal_for_annealing)

            for (its, equil, temps) in [(equil_its, equil_equil, equil_temps)]:
                for temp in temps:

                    MD.optimize(sel_mobile, max_iterations=its,
                      temperature=temp, init_velocities=init_vel,
                      equilibrate=equil,
                      actions=[actions.trace(trc_step,trc_file)])

                    scal = physical.values(default=0.0, em_density=1.0)
                    (molpdf, terms) = sel_all.energy(schedule_scale=scal)
                    print "COOLING: iteration number= %s  step= %d %d " \
                    "temp= %d  EM score= %.3f" %(a,icount,its,int(temp),-molpdf)

                    icount=icount+equil_its

            filename='md'+self.run_num+'_'+str(a)+'.pdb'
            sel_all.write(file=filename)
            a+=1

        trc_file.close()

        print "MD FINAL: step= %d: energy all (with scaling 1:10000)" % icount
        eval = sel_all.energy(schedule_scale=scal_for_annealing)

        ################## final minimization with and without CC restraints.
        ################## Optimize all atoms for refinement
        CG = conjugate_gradients()
        print " final conjugate_gradients"

        CG.optimize(sel_all, output='REPORT', max_iterations=200,
                schedule_scale=scal_for_annealing)
        eval = sel_all.energy(schedule_scale=scal_for_annealing)

        scal = physical.values(default=1.0, em_density=0.0)
        CG.optimize(sel_all, output='REPORT', max_iterations=200,
                schedule_scale=scal)
        eval = sel_all.energy(schedule_scale=scal)

        sel_all.write(file='final'+self.run_num+'_mdcg.pdb')

        os.system("rm -f *.MRC")
コード例 #13
0
ファイル: optimization.py プロジェクト: mluciarr/McComplex
def Optimizemodel(pdb_file):
    """
	It creates a PDB file with the optimized model from the input pdb, 
	with its energies and restraint contributions. Also it will create pdbs on 
	every step of the Molecular Dynamics optimization. The energy is returned as
	the total value	of Modeller's objective function, molpdf. 
	It also shows the topt 10 contributors to the molpdf before and after optimization
	"""
    # Setting up
    env = environ()
    env.io.atom_files_directory = ['../atom_files']
    env.edat.dynamic_sphere = True

    env.libs.topology.read(file='$(LIB)/top_heav.lib')
    env.libs.parameters.read(file='$(LIB)/par.lib')

    code, ext = pdb_file.split('.')

    # Complete the pdb and make a model
    mdl = complete_pdb(env, pdb_file)
    mdl.write(file=code + '.ini')

    # Select all atoms from the model, make restraints and save them in a file
    atmsel = selection(mdl)
    mdl.restraints.make(atmsel, restraint_type='stereo', spline_on_site=False)
    mdl.restraints.write(file=code + '.rsr')

    # Check the energy before optimization and save it in a var
    initial_mpdf = atmsel.energy()

    # Create optimizer objects
    cg = conjugate_gradients(output='REPORT')
    md = molecular_dynamics(output='REPORT')

    # Open a file to get basic stats on each optimization
    stats_file = open(code + '_opt.stats', 'w')

    # Run MD. Write out a PDB structure every 10 steps during the run.
    # Write stats every 10 steps
    md.optimize(atmsel,
                temperature=300,
                max_iterations=50,
                actions=[
                    actions.write_structure(10, code + '.MD%04d.pdb'),
                    actions.trace(10, stats_file)
                ])

    # Run CG, and write stats every 5 steps
    cg.optimize(atmsel,
                max_iterations=50,
                actions=[actions.trace(5, stats_file)])

    # Final energy
    final_mpdf = atmsel.energy()

    # Assess DOPE
    atmsel.assess_dope(output='ENERGY_PROFILE NO_REPORT',
                       file='TvLDH.profile',
                       normalize_profile=True,
                       smoothing_window=15)

    # Print the energies and the contributions
    initial_cont_all = dict(initial_mpdf[1])
    top_init_conts = dict(
        sorted(initial_cont_all.items(), key=itemgetter(1), reverse=True)[:5])

    l.info("\n\nThe initial energy of " + code + " is " + str(initial_mpdf[0]))
    print("\n\nThe initial energy of " + code + " is " + str(initial_mpdf[0]))
    print("The top 10 initial contributions the restraints are:\n")
    for keys, values in top_init_conts.items():
        print(keys, ":", values)

    final_cont_all = dict(final_mpdf[1])
    top_final_conts = dict(
        sorted(final_cont_all.items(), key=itemgetter(1), reverse=True)[:5])

    l.info("\n\nThe final energy of " + code + " is " + str(final_mpdf[0]))
    print("\n\nThe final energy of " + code + " is " + str(final_mpdf[0]))
    print("Final contributions the restraints are:\n")
    for keys, values in top_final_conts.items():
        print(keys, ":", values)

    mdl.write(file=code + '_optimized.pdb')
コード例 #14
0
ファイル: optimize.py プロジェクト: ariadnanet/modelais
def optimization(pdb_file, options):
    """This function needs as an input a PDB file (the model), and gives as an output the optimized model."""
    env = environ()
    env.io.atom_files_directory = ['../atom_files']
    env.edat.dynamic_sphere = True

    env.libs.topology.read(file='$(LIB)/top_heav.lib')
    env.libs.parameters.read(file='$(LIB)/par.lib')

    path, ext = pdb_file.split('.')
    list = path.split('/')
    #if results/4g83/4g83model.pdb list[0]=results list[1]=4g83 list[2]=4g83model
    dir = list[0] + "/" + list[1]
    code = list[2]

    mdl = complete_pdb(env, pdb_file)
    mdl.write(file=path + '.ini')

    atmsel = selection(mdl)

    mpdf_ini = atmsel.energy()
    z_score_ini = mdl.assess_normalized_dope()
    mdl_ep_ini = atmsel.get_dope_profile()
    mdl_ep_ini_smoothed = mdl_ep_ini.get_smoothed()
    energy_profile_txt_path = dir + '/' + code + '_DOPE_EnergyProfile.txt'
    mdl_ep_ini_smoothed.write_to_file(energy_profile_txt_path)
    print("The unoptimized model's energy of " + code + " is: " +
          str(mpdf_ini[0]))
    print("The unoptimized Z-score of " + code + " is: " + str(z_score_ini))

    energy_profile_txt_path_opt = None

    if options.optimize:
        cg = conjugate_gradients(output='REPORT')
        md = molecular_dynamics(output='REPORT')
        trcfil = open(path + '.D00000001', 'w')
        cg.optimize(atmsel,
                    max_iterations=20,
                    actions=actions.trace(5, trcfil))
        md.optimize(atmsel,
                    temperature=300,
                    max_iterations=50,
                    actions=[
                        actions.write_structure(10, path + '.D9999%04d.pdb'),
                        actions.trace(10, trcfil)
                    ])
        cg.optimize(atmsel,
                    max_iterations=20,
                    actions=[actions.trace(5, trcfil)])
        mpdf = atmsel.energy()
        z_score = mdl.assess_normalized_dope()
        print("The final model energy of " + path + " is " + str(mpdf[0]))
        print("The final model energy of " + path + " is " + str(mpdf_ini[0]))
        print("The final z-score of " + code + " is: " + str(z_score))

        mdl.write(file=path + '_optimized.pdb')

        mdl_final = atmsel.get_dope_profile()
        mdl_final_smoothed = mdl_final.get_smoothed(window=50)
        energy_profile_txt_path_opt = dir + '/' + code + '_optimized_DOPE_EnergyProfile.txt'
        mdl_final_smoothed.write_to_file(energy_profile_txt_path_opt)
        mdl.write(file=dir + '/' + code + '_optimized.pdb')

    energy_profile_plot(options, dir, code, energy_profile_txt_path,
                        energy_profile_txt_path_opt)