コード例 #1
0
ファイル: CRNN.py プロジェクト: skarbs001/dcase20_task4
 def __init__(self,
              n_in_channel,
              nclass,
              attention=False,
              activation="Relu",
              dropout=0,
              train_cnn=True,
              rnn_type='BGRU',
              n_RNN_cell=64,
              n_layers_RNN=1,
              dropout_recurrent=0,
              **kwargs):
     super(CRNN, self).__init__()
     self.attention = attention
     self.cnn = CNN(n_in_channel, activation, dropout, **kwargs)
     if not train_cnn:
         for param in self.cnn.parameters():
             param.requires_grad = False
     self.train_cnn = train_cnn
     if rnn_type == 'BGRU':
         self.rnn = BidirectionalGRU(self.cnn.nb_filters[-1],
                                     n_RNN_cell,
                                     dropout=dropout_recurrent,
                                     num_layers=n_layers_RNN)
     else:
         NotImplementedError("Only BGRU supported for CRNN for now")
     self.dropout = nn.Dropout(dropout)
     self.dense = nn.Linear(n_RNN_cell * 2, nclass)
     self.sigmoid = nn.Sigmoid()
     if self.attention:
         self.dense_softmax = nn.Linear(n_RNN_cell * 2, nclass)
         self.softmax = nn.Softmax(dim=-1)
コード例 #2
0
ファイル: common.py プロジェクト: turpaultn/walle
def get_model(state, args, init_model_name=None):
    if init_model_name is not None and os.path.exists(init_model_name):
        model, optimizer, state = load_model(init_model_name,
                                             return_optimizer=True,
                                             return_state=True)
    else:
        if "conv_dropout" in args:
            conv_dropout = args.conv_dropout
        else:
            conv_dropout = cfg.conv_dropout
        cnn_args = {1}

        if args.fixed_segment is not None:
            frames = cfg.frames
        else:
            frames = None

        nb_layers = 4
        cnn_kwargs = {
            "activation": cfg.activation,
            "conv_dropout": conv_dropout,
            "batch_norm": cfg.batch_norm,
            "kernel_size": nb_layers * [3],
            "padding": nb_layers * [1],
            "stride": nb_layers * [1],
            "nb_filters": [16, 16, 32, 65],
            "pooling": [(2, 2), (2, 2), (1, 4), (1, 2)],
            "aggregation": args.agg_time,
            "norm_out": args.norm_embed,
            "frames": frames,
        }
        nb_frames_staying = cfg.frames // (2**2)
        model = CNN(*cnn_args, **cnn_kwargs)
        # model.apply(weights_init)
        state.update({
            'model': {
                "name": model.__class__.__name__,
                'args': cnn_args,
                "kwargs": cnn_kwargs,
                'state_dict': model.state_dict()
            },
            'nb_frames_staying': nb_frames_staying
        })
        if init_model_name is not None:
            save_model(state, init_model_name)
    pytorch_total_params = sum(p.numel() for p in model.parameters()
                               if p.requires_grad)
    LOG.info(
        "number of parameters in the model: {}".format(pytorch_total_params))
    return model, state
コード例 #3
0
    def __init__(self,
                 w2v_cfg,
                 n_in_channel,
                 nclass,
                 attention=False,
                 activation="Relu",
                 dropout=0,
                 train_cnn=True,
                 rnn_type='BGRU',
                 n_RNN_cell=64,
                 n_layers_RNN=1,
                 dropout_recurrent=0,
                 cnn_integration=False,
                 **kwargs):
        super(WCRNN, self).__init__()

        self.w2v = w2v_encoder(w2v_cfg)  #Wav2Vec2Config)
        #self.w2v = Wav2VecEncoder(Wav2Vec2SedConfig, None)
        self.pooling = nn.Sequential(nn.MaxPool2d((1, 4), (1, 4)))

        self.n_in_channel = n_in_channel
        self.attention = attention
        self.cnn_integration = cnn_integration
        n_in_cnn = n_in_channel
        if cnn_integration:
            n_in_cnn = 1
        self.cnn = CNN(n_in_cnn, activation, dropout, **kwargs)
        if not train_cnn:
            for param in self.cnn.parameters():
                param.requires_grad = False
        self.train_cnn = train_cnn
        if rnn_type == 'BGRU':
            nb_in = self.cnn.nb_filters[-1]
            if self.cnn_integration:
                # self.fc = nn.Linear(nb_in * n_in_channel, nb_in)
                nb_in = nb_in * n_in_channel
            self.rnn = BidirectionalGRU(nb_in,
                                        n_RNN_cell,
                                        dropout=dropout_recurrent,
                                        num_layers=n_layers_RNN)
        else:
            NotImplementedError("Only BGRU supported for CRNN for now")
        self.dropout = nn.Dropout(dropout)
        self.dense = nn.Linear(n_RNN_cell * 2, nclass)
        self.sigmoid = nn.Sigmoid()
        if self.attention:
            self.dense_softmax = nn.Linear(n_RNN_cell * 2, nclass)
            self.softmax = nn.Softmax(dim=-1)
コード例 #4
0
def build_model(model_name, **kwargs):
    if model_name == 'CNN':
        return CNN(**kwargs)
    elif model_name == 'DAE_CNN':
        return DAE_CNN(**kwargs)
    else:
        raise Exception('Model unknown %s' % model_name)
コード例 #5
0
def main(_):
	#train('data/', 'data.csv','trained_models/')
	X,Y,_ = get_data_info('data/', 'data.csv')
	
	# read input tensor
	X = get_tensor(X).astype(np.float32)
	models = {}
	models['pants'] = CNN('pants')
	texture = np.array([
		[[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0], [1,0,0]],
		[[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0], [1,0,0]],
		[[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0], [1,0,0]],
		[[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0], [1,0,0]],
		[[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0], [1,0,0]],
		[[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0], [1,0,0]],
		[[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0], [1,0,0]],
		[[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0],[1,0,0], [1,0,0], [1,0,0], [1,0,0]],
		[[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1], [0,0,1]],
		[[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1], [0,0,1]],
		[[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1], [0,0,1]],
		[[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1], [0,0,1]],
		[[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1], [0,0,1]],
		[[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1], [0,0,1]],
		[[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1],[0,0,1], [0,0,1], [0,0,1], [0,0,1]]
	],dtype=np.float32)
	texture_swap(texture, labels()[0], models, X[0][:,:,:3])
コード例 #6
0
def train(datafolder, datafile, modelfolder):
	'''
		@param datafolder {string} the path to the folder with dataset labels i.e. db/data/
		@param datafile  {string} the name of the file with dataset labels, no path
		@param modelfolder {string} the path to folder where models should be stored
		@return dict{} dictionary of models for each label in mlfashion.labels()
	'''
	models = {}
	X,Y,_ = get_data_info(datafolder, datafile)
	
	# read input tensor
	X = get_tensor(X).astype(np.float32)
	for label in labels():
		models[label] = CNN(label)
		# create separate thread or process
		
		# get output tensor
		print('Training for ' + label)
		T = get_output_tensor(Y, label).astype(np.float32)
		train_segmentation(models[label], X, T, modelfolder)
		models[label].save(modelfolder + 'safesave/' + label + '.ckpt')
		models[label].save(modelfolder + label + '.ckpt')
		del T

		# end of part in parallel

	return models
コード例 #7
0
ファイル: NEC.py プロジェクト: jlrussin/RL_project
 def __init__(self, env, args, device='cpu'):
     """
     Instantiate an NEC Agent
     ----------
     env: gym.Env
         gym environment to train on
     args: args class from argparser
         args are from from train.py: see train.py for help with each arg
     device: string
         'cpu' or 'cuda:0' depending on use_cuda flag from train.py
     """
     self.environment_type = args.environment_type
     self.env = env
     self.device = device
     # Hyperparameters
     self.epsilon = args.initial_epsilon
     self.final_epsilon = args.final_epsilon
     self.epsilon_decay = args.epsilon_decay
     self.gamma = args.gamma
     self.N = args.N
     # Transition queue and replay memory
     self.transition_queue = []
     self.replay_every = args.replay_every
     self.replay_buffer_size = args.replay_buffer_size
     self.replay_memory = ReplayMemory(self.replay_buffer_size)
     # CNN for state embedding network
     self.frames_to_stack = args.frames_to_stack
     self.embedding_size = args.embedding_size
     self.in_height = args.in_height
     self.in_width = args.in_width
     self.cnn = CNN(self.frames_to_stack, self.embedding_size,
                    self.in_height, self.in_width).to(self.device)
     # Differentiable Neural Dictionary (DND): one for each action
     self.kernel = inverse_distance
     self.num_neighbors = args.num_neighbors
     self.max_memory = args.max_memory
     self.lr = args.lr
     self.dnd_list = []
     for i in range(env.action_space.n):
         self.dnd_list.append(
             DND(self.kernel, self.num_neighbors, self.max_memory,
                 args.optimizer, self.lr))
     # Optimizer for state embedding CNN
     self.q_lr = args.q_lr
     self.batch_size = args.batch_size
     self.optimizer = get_optimizer(args.optimizer, self.cnn.parameters(),
                                    self.lr)
コード例 #8
0
    def init_model(self):
        '''
        pooling, rnn, lstm, bilstm, cnn, multi_cnn, gru
        :return:
        '''
        if self.opts.model == 'pooling':
            self.model = Pooling(opts=self.opts,
                                 vocab=self.vocab,
                                 label_vocab=self.label_vocab)
        elif self.opts.model == 'cnn':
            self.model = CNN(opts=self.opts,
                             vocab=self.vocab,
                             label_vocab=self.label_vocab)
        elif self.opts.model == 'multi_channel_cnn':
            self.model = Multi_Channel_CNN(opts=self.opts,
                                           vocab=self.vocab,
                                           label_vocab=self.label_vocab)
        elif self.opts.model == 'multi_layer_cnn':
            self.model = Multi_Layer_CNN(opts=self.opts,
                                         vocab=self.vocab,
                                         label_vocab=self.label_vocab)
        elif self.opts.model == 'char_cnn':
            self.char = True
            self.model = Char_CNN(opts=self.opts,
                                  vocab=self.vocab,
                                  char_vocab=self.char_vocab,
                                  label_vocab=self.label_vocab)
        elif self.opts.model == 'lstm':
            self.model = LSTM(opts=self.opts,
                              vocab=self.vocab,
                              label_vocab=self.label_vocab)
        elif self.opts.model == 'gru':
            self.model = GRU(opts=self.opts,
                             vocab=self.vocab,
                             label_vocab=self.label_vocab)
        elif self.opts.model == 'lstm_cnn':
            self.model = LSTM_CNN(opts=self.opts,
                                  vocab=self.vocab,
                                  label_vocab=self.label_vocab)
        elif self.opts.model == 'treelstm':
            self.tree = True
            self.model = BatchChildSumTreeLSTM(opts=self.opts,
                                               vocab=self.vocab,
                                               label_vocab=self.label_vocab)
        elif self.opts.model == 'cnn_treelstm':
            self.tree = True
            self.model = CNN_TreeLSTM(opts=self.opts,
                                      vocab=self.vocab,
                                      label_vocab=self.label_vocab)
        elif self.opts.model == 'lstm_treelstm':
            self.tree = True
            self.model = LSTM_TreeLSTM(opts=self.opts,
                                       vocab=self.vocab,
                                       label_vocab=self.label_vocab)
        else:
            raise RuntimeError('please choose your model first!')

        if self.opts.use_cuda:
            self.model = self.model.cuda()
コード例 #9
0
def load_models(modelsfolder):
	'''
		@param modelfolder the path to the folder where models are saved
		@return dict{} dictionary of the models for each label in mlfashion.labels()
	'''
	models = {}
	for label in labels():
		models[label] = CNN.load_model(modelsfolder + label + '0.ckpt', label)
	return models
コード例 #10
0
def setup(opt):
    if opt.model == "cnn":
        model = CNN(opt)
    elif opt.model == "bilstm":
        model = BiLSTM(opt)
    elif opt.model == "transformer":
        model = Transformer(opt)
    elif opt.model == "gah":
        model = GAH(opt)
    elif opt.model == 'gahs':
        model = GAHs(opt)
    else:
        raise Exception("model not supported: {}".format(opt.model))
    return model
コード例 #11
0
ファイル: __init__.py プロジェクト: wabyking/GPR
def setup(opt):

    if opt.contatenate == 1:
        opt.max_sequence_length = opt.max_sequence_length_contatenate

    if opt.model == "lstm_2L":
        model = LSTM2L(opt)
    elif opt.model == "cnn":
        model = CNN(opt)
    elif opt.model == "bilstm":
        model = BiLSTM(opt)
    elif opt.model == "bilstm_2L":
        model = BiLSTM2L(opt)
    else:
        raise Exception("model not supported: {}".format(opt.model))

    return model
コード例 #12
0
ファイル: Main.py プロジェクト: luwi1993/AudioML
def get_model(dataloader):
    if hp.model_name == "CNN":
        from models.CNN import Trainer, CNN
        model = CNN()
    elif hp.model_name == "RNN":
        from models.RNN import Trainer, RNN
        model = RNN(hp.n_features, 64, 3, hp.num_classes, hp.device, classes=None)
    elif hp.model_name == "AudioEncoder":
        from models.AudioEncoder import Trainer, AudioEncoder
        model = AudioEncoder()
    elif hp.model_name == "GAN":
        from models.GAN import Gan, Trainer
        model = Gan()
    elif hp.model_name == "Test":
        from models.TestModul import TestModule, Trainer
        model = TestModule()

    if os.path.isfile(hp.model_path):
        model.load_state_dict(torch.load(hp.model_path))
        print("model loaded from: {}".format(hp.model_path))

    trainer = Trainer(dataloader, model)

    return model, trainer
コード例 #13
0
ファイル: test.py プロジェクト: ridhachahed/DeepLearning
def compute_results(subnet_type, weight_sharing, aux_loss, rounds=1):

    print("=" * 100)
    print('\nWeight sharing:', weight_sharing, '   Aux loss:', aux_loss,
          '       Subnet:', subnet_type)

    if subnet_type == 'FCN':
        alpha = config.BEST_ALPHA_FCN
        nb_hidden_layers = config.SIAMESE_NET_BEST_NB_FCN
        hidden_layer = config.SIAMESE_NET_BEST_HIDDEN_FCN

        print('\nSubnet parameters:', '   HL: ', config.FCN_BEST_HIDDEN,
              '  KL: ', config.FCN_BEST_NB)
        print('\nSiamese parameters:', '   HL: ', hidden_layer, '  KL: ',
              nb_hidden_layers, '  alpha: ', alpha)

        subnet1 = FCN(nb_hidden_layers=config.FCN_BEST_NB,
                      hidden_layer=config.FCN_BEST_HIDDEN)
        subnet2 = FCN(nb_hidden_layers=config.FCN_BEST_NB,
                      hidden_layer=config.FCN_BEST_HIDDEN)
    else:
        alpha = config.BEST_ALPHA_CNN
        nb_hidden_layers = config.SIAMESE_NET_BEST_NB_CNN
        hidden_layer = config.SIAMESE_NET_BEST_HIDDEN_CNN

        print('\nSubnet parameters:', '   BC: ', config.CNN_BEST_CHANNEL,
              '   KC: ', config.CNN_BEST_KERNEL_SIZE, '   HL: ',
              config.CNN_BEST_HIDDEN, '  KL: ', config.CNN_BEST_NB)
        print('\nSiamese parameters:', '   HL: ', hidden_layer, '  KL: ',
              nb_hidden_layers, '  alpha: ', alpha)

        subnet1 = CNN(nb_hidden_layers=config.CNN_BEST_NB,
                      hidden_layer=config.CNN_BEST_HIDDEN,
                      base_channel_size=config.CNN_BEST_CHANNEL,
                      kernel_size=config.CNN_BEST_KERNEL_SIZE)
        subnet2 = CNN(nb_hidden_layers=config.CNN_BEST_NB,
                      hidden_layer=config.CNN_BEST_HIDDEN,
                      base_channel_size=config.CNN_BEST_CHANNEL,
                      kernel_size=config.CNN_BEST_KERNEL_SIZE)

    if weight_sharing:
        model = SiameseNet(subnet1,
                           nb_hidden_layers=nb_hidden_layers,
                           hidden_layer=hidden_layer)
    else:
        model = SiameseNet(subnet1,
                           subnet2,
                           nb_hidden_layers=nb_hidden_layers,
                           hidden_layer=hidden_layer)

    loss_train = []
    acc_train = []
    loss_test = []
    acc_test = []

    for i in range(rounds):
        print('\nTrain beginning...')
        training_losses, training_acc, _, _, test_losses, test_acc, _, _ = train_siamese(
            model=model,
            dataloader=train_dataloader,
            test_dataloader=test_dataloader,
            aux_loss=aux_loss,
            alpha=alpha)

        print('\nTrain complete !')

        final_train_loss, final_train_acc = training_losses[-1], training_acc[
            -1]
        loss_train.append(final_train_loss)
        acc_train.append(final_train_acc)

        final_test_loss, final_test_acc = test_losses[-1], test_acc[-1]
        loss_test.append(final_test_loss)
        acc_test.append(final_test_acc)

    mean_train_loss = sum(loss_train) / len(loss_train)
    mean_train_acc = sum(acc_train) / len(acc_train)

    print(
        "In epoch {0}, on the train set we obtain a loss of {1} and an accuracy of {2}"
        .format(config.EPOCHS, round(mean_train_loss, 3),
                round(mean_train_acc, 3)))

    mean_test_loss = sum(loss_test) / len(loss_test)
    mean_test_acc = sum(acc_test) / len(acc_test)
    print(
        "In epoch {0}, on the test set we obtain a loss of {1} and an accuracy of {2}"
        .format(config.EPOCHS, round(mean_test_loss, 3),
                round(mean_test_acc, 3)))
コード例 #14
0
 def createNeuralNetworkModel(self, neuralNetworkModel):
     if neuralNetworkModel == "cnn":
         return CNN()
     elif neuralNetworkModel == "rnn":
         return RNN()
コード例 #15
0
    def __init__(self, pretrained=False):
        super(DAGCN_features, self).__init__()
        self.model_cnn = CNN(pretrained)
        self.model_GCN = MRF_GCN(pretrained)

        self.__in_features = 256*1
コード例 #16
0
def trainClassify():
    args = parser_args()
    device_id = args.gpu

    X_train, y_train, X_test, y_test = get_data(train_data, test_data,
                                                train_name, test_name)
    model = CNN(n_class=num_cate)
    if device_id >= 0:
        xp = cuda.cupy
        model.to_gpu(device_id)
    else:
        xp = np

    optimizer = optimizers.MomentumSGD(lr=0.005, momentum=0.9)
    # optimizer = optimizers.Adam()
    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer.WeightDecay(args.weight_decay))

    N_train = len(X_train)
    N_test = len(X_test)
    n_epoch = 50
    batchsize = 30

    with open(log_txt, 'w'):
        pass
    with open(log_dat, 'w'):
        pass
    for epoch in range(n_epoch):
        print('Epoch %d :' % (epoch + 1), end=" ")
        data = open(log_dat, "a")
        data.write('%d ' % (epoch + 1))
        data.close()

        # Training
        sum_loss = 0
        pred_y = []
        perm = np.random.permutation(N_train)

        for i in range(0, N_train, batchsize):
            # x = Variable(xp.array(augument(X_train[perm[i: i+batchsize]])).astype(xp.float32))
            x = Variable(
                xp.array(X_train[perm[i:i + batchsize]]).astype(xp.float32))
            t = Variable(
                xp.array(y_train[perm[i:i + batchsize]]).astype(xp.int32))

            optimizer.update(model, x, t)
            if device_id >= 0:
                sum_loss += cuda.to_cpu(model.loss.data) * len(x.data)
                pred_y.extend((np.sign(cuda.to_cpu(model.y.data)) + 1) / 2)
            else:
                sum_loss += np.array(model.loss.data) * len(x.data)
                pred_y.extend((np.sign(np.array(model.y.data)) + 1) / 2)

        loss = sum_loss / N_train
        accuracy = xp.sum(
            xp.array(pred_y, dtype=xp.int32) == xp.array(
                y_train[perm], dtype=xp.int32)) / N_train / num_cate
        print('\nTrain loss %.3f, accuracy %.4f |' % (loss, accuracy), end=" ")
        log = open(log_txt, "a")
        log.write('Train loss %.3f, accuracy %.4f |' % (loss, accuracy))
        log.close()
        data = open(log_dat, "a")
        data.write('%.3f %.4f ' % (loss, accuracy))
        data.close()

        for i in range(num_cate):
            accu = xp.sum(
                xp.array(pred_y, dtype=xp.int32)[:, i] == xp.array(
                    y_train[perm][:, i], dtype=xp.int32)) / N_train
            print('Category %d: %.4f |' % (i, accu), end=" ")
            log = open(log_txt, "a")
            log.write('Category %d: %.4f |' % (i, accu))
            log.close()
            data = open(log_dat, "a")
            data.write('%.4f ' % accu)
            data.close()

        # Testing
        sum_loss = 0
        pred_y = []

        for i in range(0, N_test, batchsize):
            # x = Variable(xp.array(augument(X_test[i: i+batchsize])).astype(xp.float32))
            x = Variable(xp.array(X_test[i:i + batchsize]).astype(xp.float32))
            t = Variable(xp.array(y_test[i:i + batchsize]).astype(xp.int32))
            if device_id >= 0:
                with chainer.using_config('train', False):
                    sum_loss += cuda.to_cpu(model(x, t).data) * len(x.data)
                    pred_y.extend((np.sign(cuda.to_cpu(model.y.data)) + 1) / 2)
            else:
                with chainer.using_config('train', False):
                    sum_loss += np.array(model(x, t).data) * len(x.data)
                    pred_y.extend((np.sign(np.array(model.y.data)) + 1) / 2)

        loss = sum_loss / N_test
        accuracy = xp.sum(
            xp.array(pred_y, dtype=xp.int32) == xp.array(
                y_test, dtype=xp.int32)) / N_test / num_cate
        print('\n Test loss %.3f, accuracy %.4f |' % (loss, accuracy), end=" ")
        log = open(log_txt, "a")
        log.write('\n Test loss %.3f, accuracy %.4f |' % (loss, accuracy))
        log.close()
        data = open(log_dat, "a")
        data.write('%.3f %.4f ' % (loss, accuracy))
        data.close()

        for i in range(num_cate):
            accu = xp.sum(
                xp.array(pred_y, dtype=xp.float32)[:, i] == xp.array(
                    y_test[:, i], dtype=xp.float32)) / N_test
            print('Category %d: %.4f |' % (i, accu), end=" ")
            log = open(log_txt, "a")
            log.write('Category %d: %.4f |' % (i, accu))
            log.close()
            data = open(log_dat, "a")
            data.write('%.4f ' % accu)
            data.close()

        print()
        log = open(log_txt, "a")
        log.write('\n')
        log.close()
        data = open(log_dat, "a")
        data.write('\n')
        data.close()

        if (epoch + 1) % 5 == 0:
            serializers.save_hdf5(
                SavedModelFolder + '/FaceCl_{0:03d}.model'.format(epoch + 1),
                model)
コード例 #17
0
        try:
            os.makedirs(params.plot_dir)
        except FileExistsError:
            pass

        logger = logging.getLogger('CNN.cv{}'.format(i))
        set_logger(os.path.join(model_dir, 'train.cv{}.log'.format(i)), logger)
        params.restore = False
        # use GPU if available
        cuda_exist = torch.cuda.is_available()
        # Set random seeds for reproducible experiments if necessary
        if cuda_exist:
            params.device = torch.device('cuda')
            # torch.cuda.manual_seed(240)
            logger.info('Using Cuda...')
            model = CNN(params, logger).cuda()
        else:
            params.device = torch.device('cpu')
            # torch.manual_seed(230)
            logger.info('Not using cuda...')
            model = CNN(params, logger)

        logger.info('Loading the datasets for batch-training')

        logger.info('Loading complete.')

        logger.info(f'Model: \n{str(model)}')

        params.num_epochs = 100
        model.xfit(train_loader, val_loader, restore_file=os.path.join(
            params.model_dir, 'best.pth.tar'))
コード例 #18
0
ファイル: CRNN.py プロジェクト: skarbs001/dcase20_task4
class CRNN(nn.Module):
    def __init__(self,
                 n_in_channel,
                 nclass,
                 attention=False,
                 activation="Relu",
                 dropout=0,
                 train_cnn=True,
                 rnn_type='BGRU',
                 n_RNN_cell=64,
                 n_layers_RNN=1,
                 dropout_recurrent=0,
                 **kwargs):
        super(CRNN, self).__init__()
        self.attention = attention
        self.cnn = CNN(n_in_channel, activation, dropout, **kwargs)
        if not train_cnn:
            for param in self.cnn.parameters():
                param.requires_grad = False
        self.train_cnn = train_cnn
        if rnn_type == 'BGRU':
            self.rnn = BidirectionalGRU(self.cnn.nb_filters[-1],
                                        n_RNN_cell,
                                        dropout=dropout_recurrent,
                                        num_layers=n_layers_RNN)
        else:
            NotImplementedError("Only BGRU supported for CRNN for now")
        self.dropout = nn.Dropout(dropout)
        self.dense = nn.Linear(n_RNN_cell * 2, nclass)
        self.sigmoid = nn.Sigmoid()
        if self.attention:
            self.dense_softmax = nn.Linear(n_RNN_cell * 2, nclass)
            self.softmax = nn.Softmax(dim=-1)

    def load_cnn(self, parameters):
        self.cnn.load(parameters)
        if not self.train_cnn:
            for param in self.cnn.parameters():
                param.requires_grad = False

    def load(self, filename=None, parameters=None):
        if filename is not None:
            parameters = torch.load(filename)
        if parameters is None:
            raise NotImplementedError(
                "load is a filename or a list of parameters (state_dict)")

        self.cnn.load(parameters=parameters["cnn"])
        self.rnn.load_state_dict(parameters["rnn"])
        self.dense.load_state_dict(parameters["dense"])

    def state_dict(self, destination=None, prefix='', keep_vars=False):
        state_dict = {
            "cnn":
            self.cnn.state_dict(destination=destination,
                                prefix=prefix,
                                keep_vars=keep_vars),
            "rnn":
            self.rnn.state_dict(destination=destination,
                                prefix=prefix,
                                keep_vars=keep_vars),
            'dense':
            self.dense.state_dict(destination=destination,
                                  prefix=prefix,
                                  keep_vars=keep_vars)
        }
        return state_dict

    def save(self, filename):
        parameters = {
            'cnn': self.cnn.state_dict(),
            'rnn': self.rnn.state_dict(),
            'dense': self.dense.state_dict()
        }
        torch.save(parameters, filename)

    def forward(self, x):
        # input size : (batch_size, n_channels, n_frames, n_freq)
        # conv features
        x = self.cnn(x)
        bs, chan, frames, freq = x.size()
        if freq != 1:
            warnings.warn("Output shape is: {}".format(
                (bs, frames, chan * freq)))
            x = x.permute(0, 2, 1, 3)
            x = x.contiguous().view(bs, frames, chan * freq)
        else:
            x = x.squeeze(-1)
            x = x.permute(0, 2, 1)  # [bs, frames, chan]

        # rnn features
        x = self.rnn(x)
        x = self.dropout(x)
        strong = self.dense(x)  # [bs, frames, nclass]
        strong = self.sigmoid(strong)
        if self.attention:
            sof = self.dense_softmax(x)  # [bs, frames, nclass]
            sof = self.softmax(sof)
            sof = torch.clamp(sof, min=1e-7, max=1)
            weak = (strong * sof).sum(1) / sof.sum(1)  # [bs, nclass]
        else:
            weak = strong.mean(1)
        return strong, weak
コード例 #19
0
ファイル: test_CNN.py プロジェクト: ezosa/DL2021-project
log_file = open(save_path + model_name + "_test_logs.txt", 'a+')

# prepare test loader for the test set
test_file = args.data_path + args.test_file
test_data = ArticlesDataset(csv_file=test_file, vocab=vocab, label2id=label2id, max_text_len=args.text_len)
test_loader = DataLoader(test_data, batch_size=args.batch_size, shuffle=False)

scores_dict = {'f1': [], 'recall': [], 'precision': [], 'confidence': []}

for run_num in range(args.num_runs):
    model_run_name = model_name + "_run"+str(run_num+1)
    print("-"*10, "Run", run_num+1, "-"*10)
    print("Model name:", model_run_name)
    print("Loading model from", save_path + model_run_name + ".pt")

    best_model = CNN(cnn_args=cnn_args, mlp_args=mlp_args).to(device)
    optimizer = torch.optim.Adam(best_model.parameters(), lr=0.005)
    load_checkpoint(save_path + model_run_name + ".pt", best_model, optimizer, device, log_file)

    results = evaluate(best_model, test_loader)
    scores_dict['f1'].append(results['f1'])
    scores_dict['recall'].append(results['recall'])
    scores_dict['precision'].append(results['precision'])

    # if args.save_confidence is True:
    #     scores_dict['confidence'].append(results['confidence'])
    #     scores_dict['labels'].append(results['labels'])
    #     scores_dict['content'].append(results['content'])
    #     sentence_encodings = results['sentence_encodings']

コード例 #20
0
def run_episode(strategies, policy, beta, device, num_worker):
    states, actions = [], []
    # all strategies use same initial training data and model weights
    reinit_seed(prop.RANDOM_SEED)
    if prop.MODEL == "MLP":
        model = MLP().apply(weights_init).to(device)
    if prop.MODEL == "CNN":
        model = CNN().apply(weights_init).to(device)
    if prop.MODEL == "RESNET18":
        model = models.resnet.ResNet18().to(device)
    init_weights = deepcopy(model.state_dict())

    # re-init seed was here before
    use_learner = True if np.random.rand(1) > beta else False
    if use_learner:
        policy = policy.to(
            device)  # load policy only when learner is used for states

    dataset_pool, valid_dataset, test_dataset = get_policy_training_splits()

    train_dataset, pool_dataset = stratified_split_dataset(
        dataset_pool, prop.INIT_SIZE, prop.NUM_CLASSES)

    # Initial sampling
    if prop.SINGLE_HEAD:
        my_strategies = []
        for StrategyClass in strategies:
            my_strategies.append(
                StrategyClass(dataset_pool, valid_dataset, test_dataset))
    if prop.CLUSTER_EXPERT_HEAD:
        UncertaintyStrategieClasses, DiversityStrategieClasses = strategies
        un_strategies = []
        di_strategies = []
        for StrategyClass in UncertaintyStrategieClasses:
            un_strategies.append(
                StrategyClass(dataset_pool, valid_dataset, test_dataset))
        for StrategyClass in DiversityStrategieClasses:
            di_strategies.append(
                StrategyClass(dataset_pool, valid_dataset, test_dataset))
    if prop.CLUSTERING_AUX_LOSS_HEAD:
        my_strategies = []
        for StrategyClass in strategies:
            my_strategies.append(
                StrategyClass(dataset_pool, valid_dataset, test_dataset))

    init_acc = train_validate_model(model, device, train_dataset,
                                    valid_dataset, test_dataset)

    t = trange(1,
               prop.NUM_ACQS + 1,
               desc="Aquisitions (size {})".format(prop.ACQ_SIZE),
               leave=True)
    for acq_num in t:
        subset_ind = np.random.choice(a=len(pool_dataset),
                                      size=prop.K,
                                      replace=False)
        pool_subset = make_tensordataset(pool_dataset, subset_ind)
        if prop.CLUSTER_EXPERT_HEAD:
            un_sel_ind = expert(acq_num, model, init_weights, un_strategies,
                                train_dataset, pool_subset, valid_dataset,
                                test_dataset, device)
            di_sel_ind = expert(acq_num, model, init_weights, un_strategies,
                                train_dataset, pool_subset, valid_dataset,
                                test_dataset, device)
            state, action = get_state_action(model,
                                             train_dataset,
                                             pool_subset,
                                             un_sel_ind=un_sel_ind,
                                             di_sel_ind=di_sel_ind)
        if prop.SINGLE_HEAD:
            sel_ind = expert(acq_num, model, init_weights, my_strategies,
                             train_dataset, pool_subset, valid_dataset,
                             test_dataset, device)
            state, action = get_state_action(model,
                                             train_dataset,
                                             pool_subset,
                                             sel_ind=sel_ind)
        if prop.CLUSTERING_AUX_LOSS_HEAD:
            sel_ind = expert(acq_num, model, init_weights, my_strategies,
                             train_dataset, pool_subset, valid_dataset,
                             test_dataset, device)
            state, action = get_state_action(model,
                                             train_dataset,
                                             pool_subset,
                                             sel_ind=sel_ind,
                                             clustering=None)
            # not implemented

        states.append(state)
        actions.append(action)
        if use_learner:
            with torch.no_grad():
                if prop.SINGLE_HEAD:
                    policy_outputs = policy(state.to(device)).flatten()
                    sel_ind = torch.topk(policy_outputs,
                                         prop.ACQ_SIZE)[1].cpu().numpy()
                if prop.CLUSTER_EXPERT_HEAD:
                    policy_output_uncertainty, policy_output_diversity = policy(
                        state.to(device))
                    # clustering_space = policy_output_diversity.reshape(prop.K, prop.POLICY_OUTPUT_SIZE)
                    # one topk for uncertainty, one topk for diversity
                    diversity_selection = torch.topk(
                        policy_output_diversity.reshape(prop.K),
                        int(prop.ACQ_SIZE / 2.0))[1].cpu().numpy()
                    uncertainty_selection = torch.topk(
                        policy_output_uncertainty.reshape(prop.K),
                        int(prop.ACQ_SIZE / 2.0))[1].cpu().numpy()
                    sel_ind = (uncertainty_selection, diversity_selection)
                if prop.CLUSTERING_AUX_LOSS_HEAD:
                    # not implemented
                    policy_outputs = policy(state.to(device)).flatten()
                    sel_ind = torch.topk(policy_outputs,
                                         prop.ACQ_SIZE)[1].cpu().numpy()

        if prop.SINGLE_HEAD:
            q_idxs = subset_ind[sel_ind]  # from subset to full pool
        if prop.CLUSTER_EXPERT_HEAD:
            unified_sel_ind = np.concatenate((sel_ind[0], sel_ind[1]))
            q_idxs = subset_ind[unified_sel_ind]  # from subset to full pool
        remaining_ind = list(set(np.arange(len(pool_dataset))) - set(q_idxs))

        sel_dataset = make_tensordataset(pool_dataset, q_idxs)
        train_dataset = concat_datasets(train_dataset, sel_dataset)
        pool_dataset = make_tensordataset(pool_dataset, remaining_ind)

        test_acc = train_validate_model(model, device, train_dataset,
                                        valid_dataset, test_dataset)

    return states, actions
コード例 #21
0
    # np.random.seed(seed_num)
    # torch.manual_seed(seed_num)
    # print("seed:", seed_num)

    emb_name = args.pretrained_emb.split("/")[-1][:-4]
    model_name = "cnn_" + str(args.emb_dim) + "embDim_" + \
                 str(args.num_kernel) + "kernels_" + \
                 str(args.stride) + "stride_" + \
                 str(args.mlp_hidden_size) + "MLPhidden_" + \
                 str(args.num_epochs) + "epochs" + "_" + emb_name
    model_name += "_run" + str(run_num + 1)

    print("Model name:", model_name)

    log_file = open(save_path + model_name + "_logs.txt", 'w')
    model = CNN(cnn_args=cnn_args, mlp_args=mlp_args).to(device)
    print(model)

    optimizer = optim.Adam(model.parameters(), lr=0.001)
    loss_fn = nn.BCELoss()

    train(model=model,
          optimizer=optimizer,
          num_epochs=num_epochs,
          criterion=loss_fn,
          eval_every=args.step_size,
          train_loader=train_loader,
          valid_loader=valid_loader,
          save_path=save_path,
          model_name=model_name)
コード例 #22
0
print(len(input_array))
print(target_array)



h.randomShuffleTogether(input_array, target_array)
train_data, train_labels, test_data, test_labels = h.splitToTrainAndTest(input_array, target_array, 0.66)



#method = "train"
method = "read"



cnn = CNN()
cnn.data(train_data, train_labels, test_data, test_labels)
cnn.createModel()
cnn.findBestWeights(method)
cnn.testModel()

print()

#method = "train"
method = "read"


lstm = LSTM()
lstm.data(train_data, train_labels, test_data, test_labels)
lstm.createModel()
lstm.findBestWeights(method)
コード例 #23
0
def main():
    args = parse_args()
    train_iter = DataIterator(args.train_file, args.max_seq_len,
                              args.batch_size)
    dev_iter = DataIterator(args.dev_file, args.max_seq_len, args.batch_size)
    test_iter = DataIterator(args.test_file, args.max_seq_len, args.batch_size)

    train_data = DataLoader(args.train_file)
    vocab_size = len(train_data.vocab)
    weights = train_data.get_pretrained_weights(args.pretrained_embeddings)
    args.pretrained_weights = weights
    # udpate the args
    args.vocab_size = vocab_size
    # a small step to solve the problem of command line input interpreted as string
    args.kernel_sizes = [int(x) for x in args.kernel_sizes]

    logger = getLogger(args.run_log)

    print("\nParameters:")

    for attr, value in sorted(args.__dict__.items()):
        logger.info("\t{}={}".format(attr.upper(), value))

    if args.model == "CNN":
        model = CNN(args)

    elif args.model == "BiLSTM":
        model = BiLSTM(args)

    elif args.model == "CNN_BiLSTM":
        model = CNN_BiLSTM(args)

    elif args.model == "CNN_BiLSTM_ATT":
        model = CNN_BiLSTM_ATTENTION(args)
    print(model)

    # starting training, comment this line if you are load a pretrained model
    if args.test is False:

        ##

        for epoch in range(args.num_epochs):
            best_acc = 0.0
            #model.train()

            steps = train(epoch, train_iter, model, args, logger)

            for mode in ['development', 'testing']:
                if mode == 'development':
                    evaluate(dev_iter, model, args, logger, mode)
                elif mode == 'testing':
                    test_acc, predictions = evaluate(test_iter, model, args,
                                                     logger, mode)
                    if test_acc > best_acc:
                        best_acc = test_acc
                        save(model, args.saved_model, 'best', steps)
                        save_predictions(args.test_file, args.prediction_file,
                                         predictions)

    else:
        model = torch.load(args.saved_model,
                           map_location=lambda storage, loc: storage)
        #model.eval()
        evaluate(test_iter, model, args, logger, mode='testing')
コード例 #24
0
from models.CNN import CNN


class Main:
    def __init__(self):
        Xtrain = self.Xtrain
        Xtest = self.Xtest
        Ytrain = self.Ytrain
        Ytrain = self.Ytest


cnn = CNN()
cnn.addConvolutionalLayer()
cnn.maxPooling()
cnn.flattening()
cnn.fullConnection()
cnn.compile()
cnn.trainTest()
コード例 #25
0
def run(args, kwargs):
    args.model_signature = str(datetime.datetime.now())[0:19]

    model_name = '' + args.model_name

    if args.loc_gauss or args.loc_inv_q or args.loc_att:
        args.loc_info = True

    if args.att_gauss_abnormal or args.att_inv_q_abnormal or args.att_gauss_spatial or args.att_inv_q_spatial or \
            args.att_module or args.laplace_att:
        args.self_att = True

    print(args)

    with open('experiment_log_' + args.operator + '.txt', 'a') as f:
        print(args, file=f)

    # IMPORT MODEL======================================================================================================
    from models.CNN import CNN as Model

    # START KFOLDS======================================================================================================
    print('\nSTART KFOLDS CROSS VALIDATION\n')
#    print(f'{args.kfold_test} Test-Train folds each has {args.epochs} epochs for a {1.0/args.kfold_val}/{(args.kfold_val - 1.0)/args.kfold_val} Valid-Train split\n')

    train_folds, test_folds = kfold_indices_warwick(args.dataset_size, args.kfold_test, seed=args.seed)

    train_error_folds = []
    test_error_folds = []
    for current_fold in range(1, args.kfold_test + 1):


        print('#################### Train-Test fold: {}/{} ####################'.format(current_fold, args.kfold_test))

        # DIRECTORY FOR SAVING==========================================================================================
        snapshots_path = 'snapshots/'
        dir = snapshots_path + model_name + '_' + args.model_signature + '/'
        sw = SummaryWriter(f'tensorboard/{model_name}_{args.model_signature}_fold_{current_fold}')

        if not os.path.exists(dir):
            os.makedirs(dir)

        # LOAD DATA=====================================================================================================
        train_fold, val_fold = kfold_indices_warwick(len(train_folds[current_fold - 1]), args.kfold_val, seed=args.seed)
        train_fold = [train_folds[current_fold - 1][i] for i in train_fold]
        val_fold = [train_folds[current_fold - 1][i] for i in val_fold]
        loc = True if args.loc_info or args.out_loc else False
        train_set, val_set, test_set = load_breast(train_fold[0], val_fold[0], test_folds[current_fold - 1], loc)

        # CREATE MODEL==================================================================================================
        print('\tcreate models')
        model = Model(args)
        if args.cuda:
            model.cuda()

        # INIT OPTIMIZER================================================================================================
        print('\tinit optimizer')
        if args.optimizer == 'Adam':
            optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999), weight_decay=args.reg)
        elif args.optimizer == 'SGD':
            optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.reg, momentum=0.9)
        else:
            raise Exception('Wrong name of the optimizer!')

        scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=60, gamma=0.1)

        # PERFORM EXPERIMENT============================================================================================
        print('\tperform experiment\n')

        train_error, test_error = experiment(
            args,
            kwargs,
            current_fold,
            train_set,
            val_set,
            test_set,
            model,
            optimizer,
            scheduler,
            dir,
            sw,
        )

        # APPEND FOLD RESULTS===========================================================================================
        train_error_folds.append(train_error)
        test_error_folds.append(test_error)

        with open('final_results_' + args.operator + '.txt', 'a') as f:
            print('RESULT FOR A SINGLE FOLD\n'
                  'SEED: {}\n'
                  'OPERATOR: {}\n'
                  'FOLD: {}\n'
                  'ERROR (TRAIN): {}\n'
                  'ERROR (TEST): {}\n\n'.format(args.seed, args.operator, current_fold, train_error, test_error),
                  file=f)
    # ======================================================================================================================
    print('-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-')
    with open('experiment_log_' + args.operator + '.txt', 'a') as f:
        print('-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\n', file=f)

    return np.mean(train_error_folds), np.std(train_error_folds), np.mean(test_error_folds), np.std(test_error_folds)
コード例 #26
0
ファイル: trainCNN.py プロジェクト: callaunchpad/RosettaCV
import torch.nn as nn
from torchvision import transforms
from torchvision.datasets import ImageFolder

from models.CNN import CNN
from trainer.trainer import Trainer
from data_loader.few_shot_dataloaders import get_few_shot_dataloader

transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor()
])

train_set = ImageFolder('/datasets/imagenetwhole/ilsvrc2012/train/',
                        transform=transform)
val_set = ImageFolder('/datasets/imagenetwhole/ilsvrc2012/val/',
                      transform=transform)

model = CNN()
loss = nn.CrossEntropyLoss()
train_loader = get_few_shot_dataloader(train_set)
val_loader = get_few_shot_dataloader(val_set)

trainer = Trainer(model, loss, train_loader, val_loader)
trainer.train(epochs=100)
コード例 #27
0
class WCRNN(nn.Module):  #, BaseFairseqModel):
    def __init__(self,
                 w2v_cfg,
                 n_in_channel,
                 nclass,
                 attention=False,
                 activation="Relu",
                 dropout=0,
                 train_cnn=True,
                 rnn_type='BGRU',
                 n_RNN_cell=64,
                 n_layers_RNN=1,
                 dropout_recurrent=0,
                 cnn_integration=False,
                 **kwargs):
        super(WCRNN, self).__init__()

        self.w2v = w2v_encoder(w2v_cfg)  #Wav2Vec2Config)
        #self.w2v = Wav2VecEncoder(Wav2Vec2SedConfig, None)
        self.pooling = nn.Sequential(nn.MaxPool2d((1, 4), (1, 4)))

        self.n_in_channel = n_in_channel
        self.attention = attention
        self.cnn_integration = cnn_integration
        n_in_cnn = n_in_channel
        if cnn_integration:
            n_in_cnn = 1
        self.cnn = CNN(n_in_cnn, activation, dropout, **kwargs)
        if not train_cnn:
            for param in self.cnn.parameters():
                param.requires_grad = False
        self.train_cnn = train_cnn
        if rnn_type == 'BGRU':
            nb_in = self.cnn.nb_filters[-1]
            if self.cnn_integration:
                # self.fc = nn.Linear(nb_in * n_in_channel, nb_in)
                nb_in = nb_in * n_in_channel
            self.rnn = BidirectionalGRU(nb_in,
                                        n_RNN_cell,
                                        dropout=dropout_recurrent,
                                        num_layers=n_layers_RNN)
        else:
            NotImplementedError("Only BGRU supported for CRNN for now")
        self.dropout = nn.Dropout(dropout)
        self.dense = nn.Linear(n_RNN_cell * 2, nclass)
        self.sigmoid = nn.Sigmoid()
        if self.attention:
            self.dense_softmax = nn.Linear(n_RNN_cell * 2, nclass)
            self.softmax = nn.Softmax(dim=-1)

    def load_cnn(self, state_dict):
        self.cnn.load_state_dict(state_dict)
        if not self.train_cnn:
            for param in self.cnn.parameters():
                param.requires_grad = False

    def load_state_dict(self, state_dict, strict=True):
        self.w2v.load_state_dice(state_dict["w2v"])
        self.cnn.load_state_dict(state_dict["cnn"])
        self.rnn.load_state_dict(state_dict["rnn"])
        self.dense.load_state_dict(state_dict["dense"])

    def state_dict(self, destination=None, prefix='', keep_vars=False):
        state_dict = {
            "w2v":
            self.w2v.state_dict(destination=destination,
                                prefix=prefix,
                                keep_vars=keep_vars),
            "cnn":
            self.cnn.state_dict(destination=destination,
                                prefix=prefix,
                                keep_vars=keep_vars),
            "rnn":
            self.rnn.state_dict(destination=destination,
                                prefix=prefix,
                                keep_vars=keep_vars),
            'dense':
            self.dense.state_dict(destination=destination,
                                  prefix=prefix,
                                  keep_vars=keep_vars)
        }
        return state_dict

    def save(self, filename):
        parameters = {
            'w2v': self.w2v.state_dict(),
            'cnn': self.cnn.state_dict(),
            'rnn': self.rnn.state_dict(),
            'dense': self.dense.state_dict()
        }
        torch.save(parameters, filename)

    def forward(self, audio):
        x = audio.squeeze()
        import pdb
        pdb.set_trace()
        feature = self.w2v(x)
        x = feature['x']
        x = x.transpose(1, 0)
        x = x.unsqueeze(1)

        # input size : (batch_size, n_channels, n_frames, n_freq)
        if self.cnn_integration:
            bs_in, nc_in = x.size(0), x.size(1)
            x = x.view(bs_in * nc_in, 1, *x.shape[2:])

        # conv features
        before = x
        x = self.cnn(x)
        bs, chan, frames, freq = x.size()
        if self.cnn_integration:
            x = x.reshape(bs_in, chan * nc_in, frames, freq)

        if freq != 1:
            warnings.warn(
                f"Output shape is: {(bs, frames, chan * freq)}, from {freq} staying freq"
            )
            x = x.permute(0, 2, 1, 3)
            x = x.contiguous().view(bs, frames, chan * freq)
        else:
            x = x.squeeze(-1)
            x = x.permute(0, 2, 1)  # [bs, frames, chan]

        # rnn features
        x = self.rnn(x)
        x = self.dropout(x)
        strong = self.dense(x)  # [bs, frames, nclass]
        strong = self.sigmoid(strong)
        if self.attention:
            sof = self.dense_softmax(x)  # [bs, frames, nclass]
            sof = self.softmax(sof)
            sof = torch.clamp(sof, min=1e-7, max=1)
            weak = (strong * sof).sum(1) / (sof.sum(1) + 1e-08)  # [bs, nclass]
        else:
            weak = strong.mean(1)
        return strong, weak
コード例 #28
0
def active_learn(exp_num, StrategyClass, subsample):
    # all strategies use same initial training data and model weights
    reinit_seed(prop.RANDOM_SEED)
    test_acc_list = []
    if prop.MODEL.lower() == "mlp":
        model = MLP().apply(weights_init).to(device)
    if prop.MODEL.lower() == "cnn":
        model = CNN().apply(weights_init).to(device)
    if prop.MODEL.lower() == "resnet18":
        model = models.resnet.ResNet18().to(device)
    init_weights = copy.deepcopy(model.state_dict())

    reinit_seed(exp_num * 10)
    dataset_pool, valid_dataset, test_dataset = get_data_splits()
    train_dataset, pool_dataset = stratified_split_dataset(
        dataset_pool, 2 * prop.NUM_CLASSES, prop.NUM_CLASSES)  #

    # initial data
    strategy = StrategyClass(dataset_pool, valid_dataset, test_dataset, device)
    # calculate the overlap of strategy with other strategies
    strategies = [
        MCDropoutSampling, EnsembleSampling, EntropySampling,
        LeastConfidenceSampling, CoreSetAltSampling, BadgeSampling
    ]
    overlapping_strategies = []
    for StrategyClass in strategies:
        overlapping_strategies.append(
            StrategyClass(dataset_pool, valid_dataset, test_dataset))
    t = trange(1,
               prop.NUM_ACQS + 1,
               desc="Aquisitions (size {})".format(prop.ACQ_SIZE),
               leave=True)
    for acq_num in t:
        model.load_state_dict(init_weights)

        test_acc = train_validate_model(model, device, train_dataset,
                                        valid_dataset, test_dataset)
        test_acc_list.append(test_acc)

        if subsample:
            subset_ind = np.random.choice(a=len(pool_dataset),
                                          size=prop.K,
                                          replace=False)
            pool_subset = make_tensordataset(pool_dataset, subset_ind)
            sel_ind, remain_ind = strategy.query(prop.ACQ_SIZE, model,
                                                 train_dataset, pool_subset)
            q_idxs = subset_ind[sel_ind]  # from subset to full pool
            remaining_ind = list(
                set(np.arange(len(pool_dataset))) - set(q_idxs))
            sel_dataset = make_tensordataset(pool_dataset, q_idxs)
            train_dataset = concat_datasets(train_dataset, sel_dataset)
            pool_dataset = make_tensordataset(pool_dataset, remaining_ind)
        else:
            # all strategies work on k-sized windows in semi-batch setting
            sel_ind, remaining_ind = strategy.query(prop.ACQ_SIZE, model,
                                                    train_dataset,
                                                    pool_dataset)
            sel_dataset = make_tensordataset(pool_dataset, sel_ind)
            pool_dataset = make_tensordataset(pool_dataset, remaining_ind)
            train_dataset = concat_datasets(train_dataset, sel_dataset)

        logging.info(
            "Accuracy for {} sampling and {} acquisition is {}".format(
                strategy.name, acq_num, test_acc))
    return test_acc_list
コード例 #29
0
ファイル: training_cnn2.py プロジェクト: NCAR/ml-ocean-bl
from data import data
path.append('..')

for loc in ["SIO"]:
    print(loc)
    for d_type in ["std_anomalies"]:
        print(d_type)
        file = "../data/" + d_type + "_" + loc + ".nc"
        d = data(file)
        d_train, d_test, d_val = d.get_data()
        if loc == "EPO":
            input_dim = (40, 60)
        else:
            input_dim = (20, 120)
        n_features = 3

        from models.CNN import CNN
        for j in range(50):
            l = CNN(input_dim,
                    n_features,
                    batch_norm=True,
                    num_layers=5,
                    Dropout=0.1,
                    num_dense_layers=0,
                    location=loc)
            losses = l.train(d_train, d_test, num_epochs=80, lr=1e-3)
            losses = l.train(d_train, d_test, num_epochs=80, lr=1e-4)
            l.save_weights('../models/saved_models/' + loc + '/' + d_type +
                           '/CNN_ens/ens_' + str(j) + '/cnn')
            tf.keras.backend.clear_session()
コード例 #30
0
ファイル: NEC.py プロジェクト: jlrussin/RL_project
class NEC:
    def __init__(self, env, args, device='cpu'):
        """
        Instantiate an NEC Agent
        ----------
        env: gym.Env
            gym environment to train on
        args: args class from argparser
            args are from from train.py: see train.py for help with each arg
        device: string
            'cpu' or 'cuda:0' depending on use_cuda flag from train.py
        """
        self.environment_type = args.environment_type
        self.env = env
        self.device = device
        # Hyperparameters
        self.epsilon = args.initial_epsilon
        self.final_epsilon = args.final_epsilon
        self.epsilon_decay = args.epsilon_decay
        self.gamma = args.gamma
        self.N = args.N
        # Transition queue and replay memory
        self.transition_queue = []
        self.replay_every = args.replay_every
        self.replay_buffer_size = args.replay_buffer_size
        self.replay_memory = ReplayMemory(self.replay_buffer_size)
        # CNN for state embedding network
        self.frames_to_stack = args.frames_to_stack
        self.embedding_size = args.embedding_size
        self.in_height = args.in_height
        self.in_width = args.in_width
        self.cnn = CNN(self.frames_to_stack, self.embedding_size,
                       self.in_height, self.in_width).to(self.device)
        # Differentiable Neural Dictionary (DND): one for each action
        self.kernel = inverse_distance
        self.num_neighbors = args.num_neighbors
        self.max_memory = args.max_memory
        self.lr = args.lr
        self.dnd_list = []
        for i in range(env.action_space.n):
            self.dnd_list.append(
                DND(self.kernel, self.num_neighbors, self.max_memory,
                    args.optimizer, self.lr))
        # Optimizer for state embedding CNN
        self.q_lr = args.q_lr
        self.batch_size = args.batch_size
        self.optimizer = get_optimizer(args.optimizer, self.cnn.parameters(),
                                       self.lr)

    def choose_action(self, state_embedding):
        """
        Choose epsilon-greedy policy according to Q-estimates from DNDs
        """
        if random.uniform(0, 1) < self.epsilon:
            return random.randint(0, self.env.action_space.n - 1)
        else:
            qs = [dnd.lookup(state_embedding) for dnd in self.dnd_list]
            action = torch.argmax(torch.cat(qs))
            return action

    def Q_lookahead(self, t, warmup=False):
        """
        Return the N-step Q-value lookahead from time t in the transition queue
        """
        if warmup or len(self.transition_queue) <= t + self.N:
            lookahead = [tr.reward for tr in self.transition_queue[t:]]
            discounted = discount(lookahead, self.gamma)
            Q_N = torch.tensor([discounted], requires_grad=True)
            return Q_N
        else:
            lookahead = [
                tr.reward for tr in self.transition_queue[t:t + self.N]
            ]
            discounted = discount(lookahead, self.gamma)
            state = self.transition_queue[t + self.N].state
            state = torch.tensor(state).permute(2, 0,
                                                1).unsqueeze(0)  # (N,C,H,W)
            state = state.to(self.device)
            state_embedding = self.cnn(state)
            Q_a = [dnd.lookup(state_embedding) for dnd in self.dnd_list]
            maxQ = torch.cat(Q_a).max()
            Q_N = discounted + (self.gamma**self.N) * maxQ
            Q_N = torch.tensor([Q_N], requires_grad=True)
            return Q_N

    def Q_update(self, Q, Q_N):
        """
        Return the Q-update for DND updates
        """
        return Q + self.q_lr * (Q_N - Q)

    def update(self):
        """
        Iterate through the transition queue and make NEC updates
        """
        # Insert transitions into DNDs
        for t in range(len(self.transition_queue)):
            tr = self.transition_queue[t]
            action = tr.action
            tr = self.transition_queue[t]
            state = torch.tensor(tr.state).permute(2, 0, 1)  # (C,H,W)
            state = state.unsqueeze(0).to(self.device)  # (N,C,H,W)
            state_embedding = self.cnn(state)
            dnd = self.dnd_list[action]

            Q_N = self.Q_lookahead(t).to(self.device)
            embedding_index = dnd.get_index(state_embedding)
            if embedding_index is None:
                dnd.insert(state_embedding.detach(), Q_N.detach().unsqueeze(0))
            else:
                Q = self.Q_update(dnd.values[embedding_index], Q_N)
                dnd.update(Q.detach(), embedding_index)
            Q_N = Q_N.detach().to(self.device)
            self.replay_memory.push(tr.state, action, Q_N)
        # Commit inserts
        for dnd in self.dnd_list:
            dnd.commit_insert()
        # Train CNN on minibatch
        for t in range(len(self.transition_queue)):
            if t % self.replay_every == 0 or t == len(
                    self.transition_queue) - 1:
                # Train on random mini-batch from self.replay_memory
                batch = self.replay_memory.sample(self.batch_size)
                actual_Qs = torch.cat([sample.Q_N for sample in batch])
                predicted_Qs = []
                for sample in batch:
                    state = torch.tensor(sample.state).permute(2, 0,
                                                               1)  # (C,H,W)
                    state = state.unsqueeze(0).to(self.device)  # (N,C,H,W)
                    state_embedding = self.cnn(state)
                    dnd = self.dnd_list[sample.action]
                    predicted_Q = dnd.lookup(state_embedding, update_flag=True)
                    predicted_Qs.append(predicted_Q)
                predicted_Qs = torch.cat(predicted_Qs).to(self.device)
                loss = torch.dist(actual_Qs, predicted_Qs)
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
                for dnd in self.dnd_list:
                    dnd.update_params()

        # Clear out transition queue
        self.transition_queue = []

    def run_episode(self):
        """
        Train an NEC agent for a single episode:
            Interact with environment
            Append (state, action, reward) transitions to transition queue
            Call update at the end of the episode
        """
        if self.epsilon > self.final_epsilon:
            self.epsilon = self.epsilon * self.epsilon_decay
        state = self.env.reset()
        if self.environment_type == 'fourrooms':
            fewest_steps = self.env.shortest_path_length(self.env.state)
        total_steps = 0
        total_reward = 0
        total_frames = 0
        done = False
        while not done:
            state_embedding = torch.tensor(state).permute(2, 0, 1)  # (C,H,W)
            state_embedding = state_embedding.unsqueeze(0).to(self.device)
            state_embedding = self.cnn(state_embedding)
            action = self.choose_action(state_embedding)
            next_state, reward, done, _ = self.env.step(action)
            self.transition_queue.append(Transition(state, action, reward))
            total_reward += reward
            total_frames += self.env.skip
            total_steps += 1
            state = next_state
        self.update()
        if self.environment_type == 'fourrooms':
            n_extra_steps = total_steps - fewest_steps
            return n_extra_steps, total_frames, total_reward
        else:
            return total_frames, total_reward

    def warmup(self):
        """
        Warmup the DND with values from an episode with a random policy
        """
        state = self.env.reset()
        total_reward = 0
        total_frames = 0
        done = False
        while not done:
            action = random.randint(0, self.env.action_space.n - 1)
            next_state, reward, done, _ = self.env.step(action)
            total_reward += reward
            total_frames += self.env.skip
            self.transition_queue.append(Transition(state, action, reward))
            state = next_state

        for t in range(len(self.transition_queue)):
            tr = self.transition_queue[t]
            state_embedding = torch.tensor(tr.state).permute(2, 0,
                                                             1)  # (C,H,W)
            state_embedding = state_embedding.unsqueeze(0).to(self.device)
            state_embedding = self.cnn(state_embedding)
            action = tr.action
            dnd = self.dnd_list[action]

            Q_N = self.Q_lookahead(t, True).to(self.device)
            if dnd.keys_to_be_inserted is None and dnd.keys is None:
                dnd.insert(state_embedding, Q_N.detach().unsqueeze(0))
            else:
                embedding_index = dnd.get_index(state_embedding)
                if embedding_index is None:
                    state_embedding = state_embedding.detach()
                    dnd.insert(state_embedding, Q_N.detach().unsqueeze(0))
                else:
                    Q = self.Q_update(dnd.values[embedding_index], Q_N)
                    dnd.update(Q.detach(), embedding_index)
            self.replay_memory.push(tr.state, action, Q_N.detach())
        for dnd in self.dnd_list:
            dnd.commit_insert()
        # Clear out transition queue
        self.transition_queue = []
        return total_frames, total_reward