コード例 #1
0
ファイル: test_trainer.py プロジェクト: rtavenar/elects
    def test_Trainer_TwoPatterns(self):

        try:
            traindataset = UCRDataset("TwoPatterns",
                                      partition="train",
                                      ratio=.75,
                                      randomstate=0,
                                      augment_data_noise=.1)
            validdataset = UCRDataset("TwoPatterns",
                                      partition="valid",
                                      ratio=.75,
                                      randomstate=0)
            nclasses = traindataset.nclasses
            traindataloader = torch.utils.data.DataLoader(traindataset,
                                                          batch_size=8,
                                                          shuffle=True,
                                                          num_workers=0,
                                                          pin_memory=True)

            validdataloader = torch.utils.data.DataLoader(validdataset,
                                                          batch_size=8,
                                                          shuffle=False,
                                                          num_workers=0,
                                                          pin_memory=True)

            model = DualOutputRNN(input_dim=1,
                                  nclasses=nclasses,
                                  hidden_dims=20,
                                  num_rnn_layers=1,
                                  dropout=.2)

            if torch.cuda.is_available():
                model = model.cuda()

            config = dict(
                epochs=2,
                learning_rate=1e-3,
                earliness_factor=.75,
                visdomenv="unittest",
                switch_epoch=1,
                loss_mode="twophase_linear_loss",
                show_n_samples=0,
                store="/tmp",
                overwrite=True,
            )

            trainer = Trainer(model, traindataloader, validdataloader,
                              **config)
            trainer.fit()
        except Exception as e:
            self.fail(logging.exception(e))
コード例 #2
0
def getModel(args):
    # Get Model
    if args.model == "DualOutputRNN":
        model = DualOutputRNN(input_dim=args.input_dims,
                              nclasses=args.nclasses,
                              hidden_dims=args.hidden_dims,
                              num_rnn_layers=args.num_layers,
                              dropout=args.dropout,
                              init_late=True)

    elif args.model == "WaveNet":

        model = WaveNetModel(layers=5,
                             blocks=4,
                             dilation_channels=32,
                             residual_channels=32,
                             skip_channels=256,
                             end_channels=args.nclasses,
                             classes=args.nclasses,
                             output_length=1,
                             kernel_size=2,
                             dtype=torch.FloatTensor,
                             input_dims=args.input_dims,
                             bias=False)

    elif args.model == "Conv1D":
        model = ConvShapeletModel(
            num_layers=args.num_layers,
            hidden_dims=args.hidden_dims,
            ts_dim=args.input_dims,
            n_classes=args.nclasses,
            use_time_as_feature=False,
            seqlength=args.seqlength,
            scaleshapeletsize=args.shapelet_width_in_percent,
            drop_probability=args.dropout,
            shapelet_width_increment=args.shapelet_width_increment)
    else:
        raise ValueError(
            "Invalid Model, Please insert either 'DualOutputRNN', or 'Conv1D'")

    if torch.cuda.is_available():
        model = model.cuda()

    return model
コード例 #3
0
ファイル: tune.py プロジェクト: rtavenar/elects
class RayTrainerDualOutputRNN(ray.tune.Trainable):
    def _setup(self, config):

        if config["dataset"] == "BavarianCrops":
            region = "HOLL_2018_MT_pilot"
            root = "/home/marc/data/BavarianCrops"
            nsamples = None
            traindataset = BavarianCropsDataset(root=root,
                                                region=region,
                                                partition="train",
                                                nsamples=nsamples)
            validdataset = BavarianCropsDataset(root=root,
                                                region=region,
                                                partition="valid",
                                                nsamples=nsamples)
        else:
            traindataset = UCRDataset(config["dataset"],
                                      partition="train",
                                      ratio=.8,
                                      randomstate=config["fold"],
                                      silent=False,
                                      augment_data_noise=0)

            validdataset = UCRDataset(config["dataset"],
                                      partition="valid",
                                      ratio=.8,
                                      randomstate=config["fold"],
                                      silent=False)

        nclasses = traindataset.nclasses

        self.epochs = config["epochs"]

        # handles multitxhreaded batching andconfig shuffling
        self.traindataloader = torch.utils.data.DataLoader(
            traindataset,
            batch_size=config["batchsize"],
            shuffle=True,
            num_workers=config["workers"],
            pin_memory=False)
        self.validdataloader = torch.utils.data.DataLoader(
            validdataset,
            batch_size=config["batchsize"],
            shuffle=False,
            num_workers=config["workers"],
            pin_memory=False)

        self.model = DualOutputRNN(input_dim=traindataset.ndims,
                                   nclasses=nclasses,
                                   hidden_dims=config["hidden_dims"],
                                   num_rnn_layers=config["num_layers"])

        if torch.cuda.is_available():
            self.model = self.model.cuda()

        self.trainer = Trainer(self.model, self.traindataloader,
                               self.validdataloader, **config)

    def _train(self):
        # epoch is used to distinguish training phases. epoch=None will default to (first) cross entropy phase

        # train five epochs and then infer once. to avoid overhead on these small datasets
        for i in range(self.epochs):
            self.trainer.train_epoch(epoch=None)

        return self.trainer.test_epoch(dataloader=self.validdataloader)

    def _save(self, path):
        path = path + ".pth"
        torch.save(self.model.state_dict(), path)
        return path

    def _restore(self, path):
        state_dict = torch.load(path, map_location="cpu")
        self.model.load_state_dict(state_dict)
コード例 #4
0
ファイル: eval.py プロジェクト: rtavenar/elects
def eval(dataset,
         batchsize,
         workers,
         num_rnn_layers,
         dropout,
         hidden_dims,
         store="/tmp",
         epochs=30,
         switch_epoch=30,
         learning_rate=1e-3,
         visdomenv="run",
         earliness_factor=.75,
         show_n_samples=1,
         modelname="DualOutputRNN",
         loss_mode=None,
         load_weights=None,
         entropy_factor=0):

    if dataset == "synthetic":
        traindataset = SyntheticDataset(num_samples=2000, T=100)
        validdataset = SyntheticDataset(num_samples=1000, T=100)
    else:
        traindataset = UCRDataset(dataset, partition="trainvalid")
        validdataset = UCRDataset(dataset, partition="test")

    nclasses = traindataset.nclasses

    np.random.seed(0)
    torch.random.manual_seed(0)
    traindataloader = torch.utils.data.DataLoader(traindataset,
                                                  batch_size=batchsize,
                                                  shuffle=True,
                                                  num_workers=workers,
                                                  pin_memory=True)

    np.random.seed(1)
    torch.random.manual_seed(1)
    validdataloader = torch.utils.data.DataLoader(validdataset,
                                                  batch_size=batchsize,
                                                  shuffle=False,
                                                  num_workers=workers,
                                                  pin_memory=True)
    if modelname == "DualOutputRNN":
        model = DualOutputRNN(input_dim=1,
                              nclasses=nclasses,
                              hidden_dim=hidden_dims,
                              num_rnn_layers=num_rnn_layers,
                              dropout=dropout)
    else:
        raise ValueError(
            "Invalid Model, Please insert either 'DualOutputRNN' or 'AttentionRNN'"
        )

    if load_weights is not None:
        model.load(load_weights)

        # parse epoch 29 from filename e.g., 'models/TwoPatterns/run/model_29.pth'
        start_epoch = int(
            os.path.basename(load_weights).split("_")[-1].split(".")[0])
    else:
        start_epoch = 0

    if torch.cuda.is_available():
        model = model.cuda()

    #if run is None:
    #    visdomenv = "{}_{}_{}".format(args.experiment, dataset,args.loss_mode.replace("_","-"))
    #    storepath = store
    #else:
    #    visdomenv = run
    #storepath = os.path.join(store, dataset)

    if switch_epoch is None:
        switch_epoch = int(epochs / 2)

    config = dict(epochs=epochs,
                  learning_rate=learning_rate,
                  earliness_factor=earliness_factor,
                  visdomenv=visdomenv,
                  switch_epoch=switch_epoch,
                  loss_mode=loss_mode,
                  show_n_samples=show_n_samples,
                  store=store,
                  entropy_factor=entropy_factor)

    trainer = Trainer(model, traindataloader, validdataloader, config=config)
    logged_data = trainer.fit(start_epoch=start_epoch)

    return logged_data