コード例 #1
0
dataRoot = args.dataRoot
maskRoot = args.maskRoot

imgData = GetData(dataRoot, maskRoot, loadSize, cropSize)
data_loader = DataLoader(imgData,
                         batch_size=batchSize,
                         shuffle=True,
                         num_workers=args.numOfWorkers,
                         drop_last=False,
                         pin_memory=True)

num_epochs = args.train_epochs

# pdb.set_trace()

netG = LBAMModel(4, 3)
if args.pretrained != '':
    netG.load_state_dict(torch.load(args.pretrained))

# pdb.set_trace()

numOfGPUs = torch.cuda.device_count()

if cuda:
    netG = netG.cuda()
    if numOfGPUs > 1:
        netG = nn.DataParallel(netG, device_ids=range(numOfGPUs))

count = 1

G_optimizer = optim.Adam(netG.parameters(), lr=0.0001, betas=(0.5, 0.9))
コード例 #2
0
maskRoot = args.maskRoot
savePath = args.savePath

if not os.path.exists(savePath):
    os.makedirs(savePath)

imgData = GetData(dataRoot, maskRoot, loadSize, cropSize)
data_loader = DataLoader(imgData,
                         batch_size=batchSize,
                         shuffle=True,
                         num_workers=args.numOfWorkers,
                         drop_last=False)

num_epochs = 10

netG = LBAMModel(4, 3)

if args.pretrained != '':
    netG.load_state_dict(torch.load(args.pretrained))
else:
    print('No pretrained model provided!')

#
if cuda:
    netG = netG.cuda()

for param in netG.parameters():
    param.requires_grad = False

print('OK!')