def __init__(self, opt): super(SeqGANInstructor, self).__init__(opt) # generator, discriminator self.gen = SeqGAN_G(cfg.gen_embed_dim, cfg.gen_hidden_dim, cfg.vocab_size, cfg.max_seq_len, cfg.padding_idx, cfg.temperature, gpu=cfg.CUDA) self.dis = SeqGAN_D(cfg.dis_embed_dim, cfg.vocab_size, cfg.padding_idx, gpu=cfg.CUDA) self.init_model() # Optimizer self.gen_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_lr) self.dis_opt = optim.Adam(self.dis.parameters(), lr=cfg.dis_lr) # Criterion self.mle_criterion = nn.NLLLoss() self.dis_criterion = nn.CrossEntropyLoss() # DataLoader self.gen_data = GenDataIter( self.gen.sample(cfg.batch_size, cfg.batch_size)) self.dis_data = DisDataIter(self.gen_data.random_batch()['target'], self.oracle_data.random_batch()['target']) self.dis_eval_data = DisDataIter( self.gen_data.random_batch()['target'], self.oracle_data.random_batch()['target'])
def __init__(self, opt): super(SeqGANInstructor, self).__init__(opt) # generator, discriminator self.gen = SeqGAN_G(cfg.gen_embed_dim, cfg.gen_hidden_dim, cfg.vocab_size, cfg.max_seq_len, cfg.padding_idx, cfg.temperature, gpu=cfg.CUDA) self.dis = SeqGAN_D(cfg.dis_embed_dim, cfg.vocab_size, cfg.padding_idx, gpu=cfg.CUDA) self.init_model() # Optimizer self.gen_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_lr) self.gen_adv_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_lr) self.dis_opt = optim.Adam(self.dis.parameters(), lr=cfg.dis_lr) # Criterion self.mle_criterion = nn.NLLLoss() self.dis_criterion = nn.CrossEntropyLoss() # DataLoader self.gen_data = GenDataIter(self.gen.sample(cfg.batch_size, cfg.batch_size)) self.dis_data = DisDataIter(self.train_data.random_batch()['target'], self.gen_data.random_batch()['target']) # Metrics self.bleu = BLEU(test_text=tensor_to_tokens(self.gen_data.target, self.index_word_dict), real_text=tensor_to_tokens(self.test_data.target, self.test_data.index_word_dict), gram=3) self.self_bleu = BLEU(test_text=tensor_to_tokens(self.gen_data.target, self.index_word_dict), real_text=tensor_to_tokens(self.gen_data.target, self.index_word_dict), gram=3)
def __init__(self, opt): super(SeqGANInstructor, self).__init__(opt) # generator, discriminator self.gen = SeqGAN_G(cfg.gen_embed_dim, cfg.gen_hidden_dim, cfg.vocab_size, cfg.max_seq_len, cfg.padding_idx, gpu=cfg.CUDA) self.dis = SeqGAN_D(cfg.dis_embed_dim, cfg.vocab_size, cfg.padding_idx, gpu=cfg.CUDA) self.init_model() # Optimizer self.gen_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_lr) self.gen_adv_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_lr) self.dis_opt = optim.Adam(self.dis.parameters(), lr=cfg.dis_lr)
class SeqGANInstructor(BasicInstructor): def __init__(self, opt): super(SeqGANInstructor, self).__init__(opt) # generator, discriminator self.gen = SeqGAN_G(cfg.gen_embed_dim, cfg.gen_hidden_dim, cfg.vocab_size, cfg.max_seq_len, cfg.padding_idx, gpu=cfg.CUDA) self.dis = SeqGAN_D(cfg.dis_embed_dim, cfg.vocab_size, cfg.padding_idx, gpu=cfg.CUDA) self.init_model() # Optimizer self.gen_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_lr) self.gen_adv_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_lr) self.dis_opt = optim.Adam(self.dis.parameters(), lr=cfg.dis_lr) def _run(self): # ===PRE-TRAINING=== # TRAIN GENERATOR if not cfg.gen_pretrain: self.log.info('Starting Generator MLE Training...') self.pretrain_generator(cfg.MLE_train_epoch) if cfg.if_save and not cfg.if_test: torch.save(self.gen.state_dict(), cfg.pretrained_gen_path) print('Save pre-trained generator: {}'.format(cfg.pretrained_gen_path)) # ===TRAIN DISCRIMINATOR==== if not cfg.dis_pretrain: self.log.info('Starting Discriminator Training...') self.train_discriminator(cfg.d_step, cfg.d_epoch) if cfg.if_save and not cfg.if_test: torch.save(self.dis.state_dict(), cfg.pretrained_dis_path) print('Save pre-trained discriminator: {}'.format(cfg.pretrained_dis_path)) # ===ADVERSARIAL TRAINING=== self.log.info('Starting Adversarial Training...') self.log.info('Initial generator: %s' % (self.cal_metrics(fmt_str=True))) for adv_epoch in range(cfg.ADV_train_epoch): self.log.info('-----\nADV EPOCH %d\n-----' % adv_epoch) self.sig.update() if self.sig.adv_sig: self.adv_train_generator(cfg.ADV_g_step) # Generator self.train_discriminator(cfg.ADV_d_step, cfg.ADV_d_epoch, 'ADV') # Discriminator if adv_epoch % cfg.adv_log_step == 0: if cfg.if_save and not cfg.if_test: self._save('ADV', adv_epoch) else: self.log.info('>>> Stop by adv_signal! Finishing adversarial training...') break def _test(self): print('>>> Begin test...') self._run() pass def pretrain_generator(self, epochs): """ Max Likelihood Pre-training for the generator """ for epoch in range(epochs): self.sig.update() if self.sig.pre_sig: pre_loss = self.train_gen_epoch(self.gen, self.oracle_data.loader, self.mle_criterion, self.gen_opt) # ===Test=== if epoch % cfg.pre_log_step == 0 or epoch == epochs - 1: self.log.info( '[MLE-GEN] epoch %d : pre_loss = %.4f, %s' % (epoch, pre_loss, self.cal_metrics(fmt_str=True))) if cfg.if_save and not cfg.if_test: self._save('MLE', epoch) else: self.log.info('>>> Stop by pre signal, skip to adversarial training...') break def adv_train_generator(self, g_step): """ The gen is trained using policy gradients, using the reward from the discriminator. Training is done for num_batches batches. """ rollout_func = rollout.ROLLOUT(self.gen, cfg.CUDA) total_g_loss = 0 print('g_step in adv_train_generator->', g_step) for step in range(g_step): samples = self.gen.sample(cfg.batch_size, cfg.batch_size) print('samples ->', samples.size()) inp, target = GenDataIter.prepare(samples, gpu=cfg.CUDA) print('inp ->', inp.size()) print('target ->', target.size()) # ===Train=== rewards = rollout_func.get_reward(target, cfg.rollout_num, self.dis) print('rewards ->', rewards.size(), rewards) adv_loss = self.gen.batchPGLoss(inp, target, rewards) self.optimize(self.gen_adv_opt, adv_loss) total_g_loss += adv_loss.item() # ===Test=== self.log.info('[ADV-GEN]: g_loss = %.4f, %s' % (total_g_loss, self.cal_metrics(fmt_str=True))) def train_discriminator(self, d_step, d_epoch, phase='MLE'): """ Training the discriminator on real_data_samples (positive) and generated samples from gen (negative). Samples are drawn d_step times, and the discriminator is trained for d_epoch d_epoch. """ # prepare loader for validate global d_loss, train_acc pos_val = self.oracle.sample(8 * cfg.batch_size, 4 * cfg.batch_size) neg_val = self.gen.sample(8 * cfg.batch_size, 4 * cfg.batch_size) dis_eval_data = DisDataIter(pos_val, neg_val) for step in range(d_step): # prepare loader for training pos_samples = self.oracle_samples # not re-sample the Oracle data neg_samples = self.gen.sample(cfg.samples_num, 4 * cfg.batch_size) dis_data = DisDataIter(pos_samples, neg_samples) for epoch in range(d_epoch): # ===Train=== d_loss, train_acc = self.train_dis_epoch(self.dis, dis_data.loader, self.dis_criterion, self.dis_opt) # ===Test=== _, eval_acc = self.eval_dis(self.dis, dis_eval_data.loader, self.dis_criterion) self.log.info('[%s-DIS] d_step %d: d_loss = %.4f, train_acc = %.4f, eval_acc = %.4f,' % ( phase, step, d_loss, train_acc, eval_acc)) if cfg.if_save and not cfg.if_test: torch.save(self.dis.state_dict(), cfg.pretrained_dis_path)