def test_test_real(): args = parse() print(args) dataset = SepeDataset(args.poses_train,args.images_train,coor_layer_flag =False) dataloader = DataLoader(dataset, batch_size=10,shuffle=False ,num_workers=1,drop_last=True) dvo_feature_extractor = DVOFeature() dvo_regressor = DVORegression() dvo_discriminator = Discriminator(500,500,2) dvo_feature_extractor.load_state_dict(torch.load(('feature_ntsd_2_10.pt'))) dvo_regressor.load_state_dict(torch.load('regressor_seed_ntsd_2_10.pt')) test(dvo_feature_extractor,dvo_regressor,dataloader,args)
def test_test(): args = parse() print(args) motion_ax_i = [int(i) for i in args.motion_ax.split(' ')] test_motion_ax_i = [int(i) for i in args.test_motion_ax.split(' ')] dataset = RandomDataset(2,motion_ax = test_motion_ax_i) dataloader = DataLoader(dataset, batch_size=1,shuffle=False ,num_workers=1,drop_last=True) dvo_feature_extractor = DVOFeature() dvo_regressor = DVORegression() dvo_discriminator = Discriminator(500,500,2) dvo_feature_extractor.load_state_dict(torch.load('feature'+args.motion_ax.replace(' ','')+'.pt')) dvo_regressor.load_state_dict(torch.load('regressor'+args.motion_ax.replace(' ','')+'.pt')) test(dvo_feature_extractor,dvo_regressor,dataloader,args)
def test_adapt(): args = parse() print(args) dataset = SepeDataset(args.poses_train,args.images_train,coor_layer_flag =False) dataloader = DataLoader(dataset, batch_size=1,shuffle=True ,num_workers=1,drop_last=True,worker_init_fn=lambda wid:np.random.seed(np.uint32(torch.initial_seed() + wid))) dataset_tgt = SepeDataset(args.poses_target,args.images_target,coor_layer_flag =False) dataloader_tgt = DataLoader(dataset_tgt, batch_size=1,shuffle=True ,num_workers=1,drop_last=True,worker_init_fn=lambda wid:np.random.seed(np.uint32(torch.initial_seed() + wid))) src_extractor = DVOFeature() tgt_extractor = DVOFeature() src_extractor.load_state_dict(torch.load(args.feature_model)) tgt_extractor.load_state_dict(torch.load(args.feature_model)) dvo_discriminator = Discriminator(500,500,2) adapt(src_extractor,tgt_extractor,dvo_discriminator,dataloader,dataloader_tgt,args) torch.save(tgt_extractor.state_dict(),'tgt_feature_'+args.tag+str(args.epoch)+'.pt') torch.save(dvo_discriminator.state_dict(),'dis_'+args.tag+str(args.epoch)+'.pt')
def test_model(image): dvo_feature_extractor = DVOFeature() dvo_regressor = DVORegression() dvo_discriminator = Discriminator(500,500,2) feature = dvo_feature_extractor(image) print(feature.shape) motion = dvo_regressor(feature) print(motion.shape) dis = dvo_discriminator(feature) print(dis)
def test_train_real(): args = parse() print(args) dataset = SepeDataset(args.poses_train,args.images_train,coor_layer_flag =False) dataloader = DataLoader(dataset, batch_size=3,shuffle=True ,num_workers=1,drop_last=True,worker_init_fn=lambda wid:np.random.seed(np.uint32(torch.initial_seed() + wid))) dvo_feature_extractor = DVOFeature() dvo_regressor = DVORegression() dvo_discriminator = Discriminator(500,500,2) trained_feature,trained_regressor = train(dvo_feature_extractor,dvo_regressor,dataloader,args) torch.save(trained_feature.state_dict(),'feature_'+args.tag+str(args.epoch)+'.pt') torch.save(trained_regressor.state_dict(),'regressor_'+args.tag+str(args.epoch)+'.pt')
def test_train(): args = parse() print(args) motion_ax_i = [int(i) for i in args.motion_ax.split(' ')] dataset = RandomDataset(20000,motion_ax = motion_ax_i) dataloader = DataLoader(dataset, batch_size=1000,shuffle=False ,num_workers=1,drop_last=True,worker_init_fn=lambda wid:np.random.seed(np.uint32(torch.initial_seed() + wid))) dvo_feature_extractor = DVOFeature() dvo_regressor = DVORegression() dvo_discriminator = Discriminator(500,500,2) trained_feature,trained_regressor = train(dvo_feature_extractor,dvo_regressor,dataloader,args) torch.save(trained_feature.state_dict(),'feature_seed'+args.motion_ax.replace(' ','')+str(args.epoch)+'.pt') torch.save(trained_regressor.state_dict(),'regressor_seed'+args.motion_ax.replace(' ','')+str(args.epoch)+'.pt')