コード例 #1
0
ファイル: cdarts_controller.py プロジェクト: xuke225/CDARTS
    def generate_nas_layer(self,
                           C_cur,
                           C_p,
                           C_pp,
                           reduction_p,
                           reduction_cur,
                           genotype,
                           cell_num=3,
                           bn_affine=True):
        cells = nn.ModuleList()
        # reduction_idx = (cell_num + 1) // 2 - 1
        # the first cell(block) is downsample
        # reduction_idx = 0
        if self.res_stem:
            reduction_idx = 0
        else:
            reduction_idx = cell_num - 1

        for i in range(cell_num):
            if i == reduction_idx and reduction_cur:
                C_cur *= 2
                reduction = True
            else:
                reduction = False

            cell = AugmentCell(genotype, C_pp, C_p, C_cur, reduction_p,
                               reduction, bn_affine)
            reduction_p = reduction
            cells.append(cell)
            C_cur_out = C_cur * len(cell.concat)
            C_pp, C_p = C_p, C_cur_out

        return cells
コード例 #2
0
ファイル: augment_cnn.py プロジェクト: zymale/NAS-Benchmark
    def __init__(self,
                 input_size,
                 C_in,
                 C,
                 n_classes,
                 n_layers,
                 auxiliary,
                 genotype,
                 stem_multiplier=3,
                 SSC=False):
        """
        Args:
            input_size: size of height and width (assuming height = width)
            C_in: # of input channels
            C: # of starting model channels
        """
        super().__init__()
        self.C_in = C_in
        self.C = C
        self.n_classes = n_classes
        self.n_layers = n_layers
        self.genotype = genotype
        # aux head position
        self.aux_pos = 2 * n_layers // 3 if auxiliary else -1

        C_cur = stem_multiplier * C
        self.stem = nn.Sequential(nn.Conv2d(C_in, C_cur, 3, 1, 1, bias=False),
                                  nn.BatchNorm2d(C_cur))

        C_pp, C_p, C_cur = C_cur, C_cur, C

        self.cells = nn.ModuleList()
        reduction_p = False
        for i in range(n_layers):
            if i in [n_layers // 3, 2 * n_layers // 3]:
                C_cur *= 2
                reduction = True
            else:
                reduction = False

            cell = AugmentCell(genotype, i, C_pp, C_p, C_cur, reduction_p,
                               reduction, SSC)
            reduction_p = reduction
            self.cells.append(cell)
            C_cur_out = C_cur * len(cell.concat)
            C_pp, C_p = C_p, C_cur_out

            if i == self.aux_pos:
                # [!] this auxiliary head is ignored in computing parameter size
                #     by the name 'aux_head'
                self.aux_head = AuxiliaryHead(input_size // 4, C_p, n_classes)

        self.gap = nn.AdaptiveAvgPool2d(1)
        self.linear = nn.Linear(C_p, n_classes)
コード例 #3
0
    def __init__(self, input_size, C_in, C, n_classes, n_layers, auxiliary, genotype,
                 stem_multiplier=3):
        """
        Args:
            input_size: size of height and width (assuming height = width)
            C_in: # of input channels
            C: # of starting model channels
        """
        super().__init__()
        self.C_in = C_in
        self.C = C
        self.n_classes = n_classes
        self.n_layers = n_layers
        self.genotype = genotype

        C_cur = 32
        self.stem = nn.Sequential(
            nn.BatchNorm2d(C_in),
            nn.Conv2d(C_in, C_cur, 5, 2, 2, bias=False),
            nn.BatchNorm2d(C_cur),
            nn.ReLU(),
            nn.Conv2d(C_cur, C_cur, 3, 2, 1, bias=False),
            nn.BatchNorm2d(C_cur),
            nn.ReLU(),
        )

        C_pp, C_p, C_cur = C_cur, C_cur, C_cur

        self.cells = nn.ModuleList()
        reduction_p = False
        for i in range(n_layers):
            if i in [1*n_layers//6, 3*n_layers//6, 5*n_layers//6]:
                C_cur *= 2
                reduction = True
            else:
                reduction = False

            cell = AugmentCell(genotype, C_pp, C_p, C_cur, reduction_p, reduction)
            reduction_p = reduction
            self.cells.append(cell)
            C_cur_out = C_cur * len(cell.concat)
            C_pp, C_p = C_p, C_cur_out


        self.gap = nn.Sequential(
            nn.Conv2d(C_p, 512, 3, 2, 1, bias=False),
            nn.BatchNorm2d(512),
            nn.AdaptiveAvgPool2d(1)
        )
        self.linear = nn.Linear(512, n_classes)
コード例 #4
0
    def __init__(self,
                 input_size,
                 C_in,
                 C,
                 n_classes,
                 n_layers,
                 auxiliary,
                 genotype,
                 stem_multiplier=3):
        super().__init__()
        self.C_in = C_in
        self.C = C
        self.n_classes = n_classes
        self.n_layers = n_layers
        self.genotype = genotype

        self.aux_pos = 2 * n_layers // 3 if auxiliary else -1

        C_cur = stem_multiplier * C
        self.stem = nn.Sequential(nn.Conv2d(C_in, C_cur, 3, 1, 1, bias=False),
                                  nn.BatchNorm2d(C_cur))

        C_pp, C_p, C_cur = C_cur, C_cur, C

        self.cells = nn.ModuleList()
        reduction_p = False
        for i in range(n_layers):
            if i in [n_layers // 3, 2 * n_layers // 3]:
                C_cur *= 2
                reduction = True
            else:
                reduction = False

            cell = AugmentCell(genotype, C_pp, C_p, C_cur, reduction_p,
                               reduction)
            reduction_p = reduction
            self.cells.append(cell)
            C_cur_out = C_cur * len(cell.concat)
            C_pp, C_p = C_p, C_cur_out

            if i == self.aux_pos:
                self.aux_head = AuxiliaryHead(input_size // 4, C_p, n_classes)

        self.gap = nn.AdaptiveAvgPool2d(1)
        self.linear = nn.Linear(C_p, n_classes)