def eval_initialize(self, opt): BaseModel.eval_initialize(self, opt) args = {'scale': opt.sr_factor, 'n_feats': 256, 'n_resblocks': 32, 'res_scale': 0.1, 'n_colors': 3, 'rgb_range': opt.rgb_range} self.model = EDSR(args).to(self.device) self.model = nn.DataParallel(self.model, opt.gpu_ids)
def eval_initialize(self, opt): BaseModel.eval_initialize(self, opt) args = {'scale': opt.sr_factor, 'n_resgroups': 10, 'n_feats': 64, 'n_resblocks': 20, 'res_scale': 1, 'n_colors': 3, 'reduction': 16, 'rgb_range': opt.rgb_range} self.model = RCAN(args).to(self.device) self.model = nn.DataParallel(self.model, opt.gpu_ids)
def eval_initialize(self, opt): BaseModel.eval_initialize(self, opt) kernel_size = 3 n_colors = opt.n_colors self.model = NonLocalModule(kernel_size, n_colors, self.device) self.model = nn.DataParallel(self.model, opt.gpu_ids) self.model.to(self.device)
def eval_initialize(self, opt): BaseModel.eval_initialize(self, opt) args = { 'scale': opt.sr_factor, 'G0': 64, 'RDNkSize': 3, 'RDNconfig': 'B', 'n_colors': 3 } self.model = RDN(args).to(self.device) self.model = nn.DataParallel(self.model, opt.gpu_ids)
def eval_initialize(self, opt): BaseModel.eval_initialize(self, opt) SR_args = { 'scale': opt.sr_factor, 'n_feats': opt.n_feats, 'n_resblocks': opt.n_resblocks, 'n_colors': opt.n_colors, 'main_model': opt.main_model, 'recur_step': opt.recur_step, 'res_scale': opt.res_scale, 'device': self.device, 'n_resgroups1': opt.n_resgroups1, 'n_resgroups2': opt.n_resgroups2, 'rgb_range': opt.rgb_range } self.sr_factor = opt.sr_factor self.model = PSIARRENet(SR_args) self.model = nn.DataParallel(self.model, device_ids=opt.gpu_ids) self.model.to(self.device) if opt.n_resgroups1 == 2: self.tiny = True else: self.tiny = False