def VGG19Templet(input_channel=3, pretrained=False, **kwargs): """VGG 19-layer model (configuration "E") Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = VGGTemplet(make_layers(cfg['E'], input_channel), **kwargs) if pretrained: model_dict = LoadPretrainedModel( model, model_zoo.load_url(model_urls['vgg19'])) model.load_state_dict(model_dict) return model
def Resnet152Templet(input_channel, pretrained=False, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNetTemplet(Bottleneck, [3, 8, 36, 3], input_channel, **kwargs) if pretrained: model_dict = LoadPretrainedModel( model, model_zoo.load_url(model_urls['resnet152'])) model.load_state_dict(model_dict) return model
def VGG16BNTemplet(input_channel=3, pretrained=False, **kwargs): """VGG 16-layer model (configuration "D") with batch normalization Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = VGGTemplet(make_layers(cfg['D'], input_channel, batch_norm=True), **kwargs) if pretrained: model_dict = LoadPretrainedModel( model, model_zoo.load_url(model_urls['vgg16_bn'])) model.load_state_dict(model_dict) return model