コード例 #1
0
        for i, (x, y, x_lens, y_lens) in tqdm(enumerate(dataloader)):
            # x = x.to("cuda")
            x = x.to(device)
            outs, out_lens = model(x, x_lens)
            outs = F.softmax(outs, 1)
            outs = outs.transpose(1, 2)
            ys = []
            offset = 0
            for y_len in y_lens:
                ys.append(y[offset : offset + y_len])
                offset += y_len
            out_strings, out_offsets = decoder.decode(outs, out_lens)
            y_strings = decoder.convert_to_strings(ys)
            for pred, truth in zip(out_strings, y_strings):
                trans, ref = pred[0], truth[0]
                cer += decoder.cer(trans, ref) / float(len(ref))
        cer /= len(dataloader.dataset)
    model.train()
    return cer


if __name__ == "__main__":
    with open("./labels.json") as f:
        vocabulary = json.load(f)
        vocabulary = "".join(vocabulary)
    model = GatedConv(vocabulary)
    if(not os.path.exists(save_path)):
        os.mkdir(save_path)
    model.to(device)
    train(model)
コード例 #2
0
    cer = 0
    print("decoding")
    with torch.no_grad():
        for i, (x, y, x_lens, y_lens) in tqdm(enumerate(dataloader)):
            x = x.to("cuda")
            outs, out_lens = model(x, x_lens)
            outs = F.softmax(outs, 1)
            outs = outs.transpose(1, 2)
            ys = []
            offset = 0
            for y_len in y_lens:
                ys.append(y[offset : offset + y_len])
                offset += y_len
            out_strings, out_offsets = decoder.decode(outs, out_lens)
            y_strings = decoder.convert_to_strings(ys)
            for pred, truth in zip(out_strings, y_strings):
                trans, ref = pred[0], truth[0]
                cer += decoder.cer(trans, ref) / float(len(ref))
        cer /= len(dataloader.dataset)
    model.train()
    return cer


if __name__ == "__main__":
    with open("data_aishell/labels.json") as f:
        vocabulary = json.load(f)
        vocabulary = "".join(vocabulary)
    model = GatedConv(vocabulary)
    model.to("cuda")
    train(model)