opt.batchSize = 1 # test code only supports batchSize = 1 opt.serial_batches = True # no shuffle opt.no_flip = True # no flip data_loader = DataLoader(opt) dataset = data_loader.load_data() model = CycleGANModel() model.initialize(opt) visualizer = Visualizer(opt) if __name__ == '__main__': root_dir = os.path.join(opt.result_root_dir, opt.variable) web_dir = os.path.join(root_dir, opt.variable_value, opt.phase) webpage = html.HTML(web_dir, 'Experiment = GAN2C, Phase = test, Epoch = latest') # test for i, data in enumerate(dataset): model.set_input(data) model.test() visuals = model.get_current_visuals() img_path = model.get_image_paths() print('process image... %s' % img_path) visualizer.save_images(webpage, visuals, img_path) short_path = ntpath.basename(''.join(img_path)) test_depth_errors = model.get_depth_errors() visualizer.test_depth_errors(i + 1, short_path, test_depth_errors) webpage.save()
print('creating web directory', web_dir) webpage = html.HTML( web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) #if opt.eval: # model.eval() for i, data in enumerate(dataset): if i > 10: exit() #if i >= opt.num_test: # only apply our model to opt.num_test images. # break #model.set_input(data) # unpack data from data loader #model.test() # run inference teacher.set_input(data) teacher.test() model.set_input( data) # unpack data from dataset and apply preprocessing model.optimize_parameters() model.compute_visuals() visuals = model.get_current_visuals() # get image results img_path = model.get_image_paths() # get image paths print(img_path) #save_images(webpage, visuals, img_path) #visuals = model.get_current_visuals() # get image results #img_path = model.get_image_paths() # get image paths #if i % 5 == 0: # save images to an HTML file # print('processing (%04d)-th image... %s' % (i, img_path)) # save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize)
opt.batch_size = 1 # test code only supports batch_size = 1 opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. opt.no_flip = True # no flip; comment this line if results on flipped images are needed. dataset = create_dataset( opt) # create a dataset given opt.dataset_mode and other options model = CycleGANModel( opt) # create a model given opt.model and other options model.setup( opt) # regular setup: load and print networks; create schedulers # create results dir image_dir = create_results_dir(opt) # test with eval mode. This only affects layers like batchnorm and dropout. # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout. if opt.eval: model.eval() for i, data in enumerate(dataset): if i >= opt.num_test: # only apply our model to opt.num_test images. break model.set_input(data) # unpack data from data loader model.test() # run inference visuals = model.get_current_visuals() # get image results img_path = model.get_image_paths() # get image paths if i % 5 == 0: # save images to an HTML file print('processing (%04d)-th image... %s' % (i, img_path)) save_images(opt, image_dir, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize)