コード例 #1
0
def main():
    # read csv files for driving log
    lines = []
    with open('./data/data/driving_log.csv') as csvfile:
        reader = csv.reader(csvfile)
        for line in reader:
            lines.append(line)

    correction = 0.2  # This is a parameter to tune
    current_path = './data/data/'
    # modify the image path
    images = []
    measurements = []
    for line in lines[1:]:
        img_centre = line[0]
        img_left = line[1][1:]  # get rid of the space at the beginning
        img_right = line[2][1:]  # get rid of the space at the beginning
        # create adjusted steering meaurements for the side camera iamges
        steering_centre = float(line[3])

        for num, img in enumerate([img_centre, img_left, img_right]):
            image = cv2.imread(current_path + img)
            images.append(image)
            images.append(cv2.flip(image, 1))

            if num == 1:
                steering = steering_centre + correction
            elif num == 2:
                steering = steering_centre - correction
            elif num == 0:
                steering = steering_centre

            measurements.append(steering)
            measurements.append(steering * (-1.0))

    X_train = np.array(images)
    y_train = np.array(measurements)

    # Load the model
    model = DenseNet(input_shape=(160, 320, 3),
                     depth=3 * 3 + 4,
                     nb_dense_block=3,
                     growth_rate=12,
                     bottleneck=True,
                     reduction=0.5,
                     weights=None,
                     cropping=((70, 25), (0, 0)),
                     norm_lambda=True,
                     activation=None,
                     classes=1)

    model.compile(loss='mse', optimizer='adam')
    model.fit(X_train, y_train, validation_split=0.2, shuffle=True, epochs=5)
    model.save('./models/model_densenet.h5')
コード例 #2
0
                                    featurewise_std_normalization=False,
                                    rotation_range=10,
                                    width_shift_range=0.1,
                                    height_shift_range=0.1,
                                    zoom_range=.1,
                                    horizontal_flip=True)

# model parameters/compilation
model = DenseNet(classes=num_classes,
                 input_shape=(64, 64, 1),
                 depth=40,
                 growth_rate=12,
                 bottleneck=True,
                 reduction=0.5)
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
model.summary()

datasets = ['fer2013']
for dataset_name in datasets:
    print('Training dataset:', dataset_name)

    # callbacks
    log_file_path = base_path + dataset_name + '_emotion_training.log'
    csv_logger = CSVLogger(log_file_path, append=False)
    early_stop = EarlyStopping('val_loss', patience=patience)
    reduce_lr = ReduceLROnPlateau('val_loss',
                                  factor=0.1,
                                  patience=int(patience / 4),
                                  verbose=1)