コード例 #1
0
    def startVideo(self, save_img=False): #실질적으로 이 함수에서 바운딩 박스도 찾고 화면 표출도 담당함
        run_video = True
        while run_video:

            out, source, weights, view_img, save_txt, imgsz = \
                opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
            webcam = source.isnumeric() or source.startswith(('rtsp://', 'rtmp://', 'http://')) or source.endswith(
                '.txt')
            # Initialize
            set_logging()
            device = select_device(opt.device)
            if os.path.exists(out):
                 shutil.rmtree(out)  # delete output folder
            os.makedirs(out)  # make new output folder
            half = device.type != 'cpu'  # half precision only supported on CUDA

            # Load model
            model = attempt_load(weights, map_location=device)  # load FP32 model
            imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
            if half:
                model.half()  # to FP16

            # Second-stage classifier
            classify = False
            if classify:
                modelc = load_classifier(name='resnet101', n=2)  # initialize
                modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weights
                modelc.to(device).eval()

            # Set Dataloader
            vid_path, vid_writer = None, None
            if webcam:
                view_img = True
                cudnn.benchmark = True  # set True to speed up constant image size inference
                dataset = LoadStreams(source, img_size=imgsz)
            else:
                view_img = True  # show video
                save_img = True
                dataset = LoadImages(source, img_size=imgsz)

            # Get names and colors
            names = model.module.names if hasattr(model, 'module') else model.names
            colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]

            # Run inference
            t0 = time.time()
            img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
            _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
            for path, img, im0s, vid_cap in dataset:
                if type(im0s) == list:  # 웹캠인 경우
                    im0s[0] = cv2.addWeighted(im0s[0], self.contrast / 10, im0s[0], 0, self.brightness)
                else:
                    # img = cv2.addWeighted(img, self.contrast / 10, img, 0, self.brightness)  # 기존 이미지에 변경된 brightness와 contrast를 더한다.
                    if type(im0s) == list:  # 웹캠인 경우
                        im0s[0] = cv2.addWeighted(im0s[0], self.contrast / 10, im0s[0], 0, self.brightness)
                    else:
                        if self.mode_stat:  # img RGB im0s BGR
                            im0s_hsv = cv2.cvtColor(im0s, cv2.COLOR_BGR2HSV)
                            # print("dddddddddd: ", im0s_hsv.shape)
                            im0s_mean = im0s_hsv[..., 2].mean()
                            print(im0s_mean)
                            # print("kkk", img.shape)
                            # print("LKJLKJLKJLKJ:", np.transpose(img).shape)

                            # img_hsv = cv2.cvtColor(np.transpose(img), cv2.COLOR_BGR2HSV)

                            # 100 정도로 맞추기 (255까지 있음)
                            im0s_hsv[..., 2] = np.where(im0s_hsv[..., 2] < 200, im0s_hsv[..., 2] + 40, im0s_hsv[..., 2])
                            # im0s_hsv[..., 2] += 30
                            # im0s_hsv[..., 2] = np.where(im0s_hsv[..., 2] >, , im0s_hsv)
                            # img_hsv[..., 2] += 30

                            im0s = cv2.cvtColor(im0s_hsv, cv2.COLOR_HSV2BGR)
                            # img = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR)
                            print("트렌스포즈 전", img.shape)
                            # img = np.transpose(img)
                            print("트렌스포즈 후", img.shape)

                            # 밝기, 대조값 범위로 조절하는 방법
                            # if im0s_mean >= 56.:
                            #     self.brightness = 40
                            #     self.contrast = 20
                            # # if im0s_mean >= 57.:
                            # #     self.brightness = 50
                            # #     self.contrast = 20
                            # img = cv2.addWeighted(img, self.contrast / 10, img, 0, self.brightness)  # 기존 이미지에 변경된 brightness와 contrast를 더한다.
                            # im0s = cv2.addWeighted(im0s, self.contrast / 10, im0s, 0, self.brightness)

                            # 이미지 이퀄라이제이션 방법1
                            # im0s_ycrcb = cv2.cvtColor(im0s, cv2.COLOR_BGR2YCrCb)
                            # ycrcb_planes = cv2.split(im0s_ycrcb)  # 밝기 성분(Y)에 대해서만 히스토그램 평활화 수행
                            # ycrcb_planes[0] = cv2.equalizeHist(ycrcb_planes[0])
                            # dst_ycrcb = cv2.merge(ycrcb_planes)
                            # im0s = cv2.cvtColor(dst_ycrcb, cv2.COLOR_YCrCb2BGR)

                            # 노이즈를 막기 위해 CLAHE를 사용한 방법2
                            # lab = cv2.cvtColor(im0s, cv2.COLOR_BGR2LAB)
                            # lab_planes = cv2.split(lab)
                            # clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(100, 100))
                            # lab_planes[0] = clahe.apply(lab_planes[0])
                            # lab = cv2.merge(lab_planes)
                            # im0s = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
                            # # im0s = cv2.addWeighted(im0s, 50 / 10, im0s, 0, 90)
                            #
                            # img = np.reshape(img, (640, 640, 3))
                            # lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
                            # lab_planes = cv2.split(lab)
                            # clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(100, 100))
                            # lab_planes[0] = clahe.apply(lab_planes[0])
                            # lab = cv2.merge(lab_planes)
                            # img = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
                            # img = np.reshape(img, (3, 640, 640))

                            # 밝기 전체 픽셀 계산으로
                        else:
                            self.brightness = 10
                            self.contrast = 10

                img = torch.from_numpy(img).to(device)
                img = img.half() if half else img.float()  # uint8 to fp16/32
                img /= 255.0  # 0 - 255 to 0.0 - 1.0
                if img.ndimension() == 3:
                    img = img.unsqueeze(0)

                # Inference
                t1 = time_synchronized()
                pred = model(img, augment=opt.augment)[0]

                # Apply NMS
                pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes,
                                           agnostic=opt.agnostic_nms)
                t2 = time_synchronized()

                # Apply Classifier
                if classify:
                    pred = apply_classifier(pred, modelc, img, im0s)

                # Process detections
                for i, det in enumerate(pred):  # detections per image
                    if webcam:  # batch_size >= 1
                        p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
                    else:
                        p, s, im0 = path, '', im0s

                    # im0 = cv2.addWeighted(im0, self.contrast / 10, im0, 0, self.brightness)
                    save_path = str(Path(out) / Path(p).name)
                    txt_path = str(Path(out) / Path(p).stem) + (
                        '_%g' % dataset.frame if dataset.mode == 'video' else '')
                    s += '%gx%g ' % img.shape[2:]  # print string
                    gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                    if det is not None and len(det):
                        # Rescale boxes from img_size to im0 size
                        det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                        # Print results
                        for c in det[:, -1].unique():
                            n = (det[:, -1] == c).sum()  # detections per class
                            #print("$$$$$$$$$$$$$",det[0,0],det[0,1],det[0,2],"\n",det[0,3],det[0,4],det[0,5])
                            s += '%g %ss, ' % (n, names[int(c)])  # add to string

                        # Write results
                        for *xyxy, conf, cls in reversed(det):
                            if save_txt:  # Write to file
                                xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(
                                    -1).tolist()  # normalized xywh

                                with open(txt_path + '.txt', 'a') as f:
                                    f.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label format

                            if save_img or view_img:  # Add bbox to image
                                label = '%s %.2f' % (names[int(cls)], conf)
                                plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
                    print('%sDone. (%.3fs)' % (s, t2 - t1))

                    if view_img:
                        global cnt
                        global flag_
                        # im0 # 매 프레임 마다 실제 이미지 matrix (윗부분 코드에 있음 im0)
                        #이 부분이 영상크기 리사이즈 해주는 코드
                        # PIL_image = Image.fromarray(im0.astype('uint8'), 'RGB')
                        # resized_image=PIL_image.resize((560,600)) #video size which you want
                        # im0 = numpy.array(resized_image)
                        ##알이씨 원 깜빡임 구현
                        cnt += 1
                        if cnt ==30:
                            if flag_==1:
                                flag_=0
                                cnt = 0
                            else:
                                flag_=1
                                cnt = 0

                        if flag_ == 1:
                            cv2.circle(im0, (15, 20), 10, (0, 0, 255), -1)
                        ##REC draw
                        font = cv2.FONT_HERSHEY_SIMPLEX
                        bottomLeftCornerOfText = (30, 30)
                        fontScale = 1
                        fontColor = (0, 0, 255)
                        lineType = 2

                        cv2.putText(im0, 'REC',
                                    bottomLeftCornerOfText,
                                    font,
                                    fontScale,
                                    fontColor,
                                    lineType)

                        font = cv2.FONT_HERSHEY_SIMPLEX
                        bottomLeftCornerOfText = (10, 60)
                        fontScale = 0.5
                        fontColor = (255, 255, 255)
                        lineType = 2

                        #현재시간 띄우기
                        now = datetime.datetime.now()
                        nowDatetime = now.strftime('%Y-%m-%d %H:%M:%S')

                        cv2.putText(im0, nowDatetime,
                                    bottomLeftCornerOfText,
                                    font,
                                    fontScale,
                                    fontColor,
                                    lineType)
                        color_swapped_image = cv2.cvtColor(im0, cv2.COLOR_BGR2RGB)  # 이미지 컬러 형식 변환
                        qt_image1 = QtGui.QImage(color_swapped_image.data,
                                                 color_swapped_image.shape[1],  # width
                                                 color_swapped_image.shape[0],  # height
                                                 color_swapped_image.strides[0],
                                                 QtGui.QImage.Format_RGB888)

                        self.VideoSignal1.emit(qt_image1)   # qt_image1이 처리가 다완료된 이미지 그것을 방출
                        loop = QtCore.QEventLoop()
                        QtCore.QTimer.singleShot(1, loop.quit)  # 60 ms, FPS를 담당함 숫자 작을수록 부드러워짐
                        loop.exec_()
                    if save_img:
                        if dataset.mode == 'images':
                            cv2.imwrite(save_path, im0)
                        else:
                            if vid_path != save_path:  # new video
                                vid_path = save_path
                                if isinstance(vid_writer, cv2.VideoWriter):
                                    vid_writer.release()  # release previous video writer

                                fourcc = 'mp4v'  # output video codec
                                fps = vid_cap.get(cv2.CAP_PROP_FPS)
                                w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                                h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                                vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
                            vid_writer.write(im0)

            if save_txt or save_img:
                print('Results saved to %s' % Path(out))
                if platform.system() == 'Darwin' and not opt.update:  # MacOS
                    os.system('open ' + save_path)
            print('Done. (%.3fs)' % (time.time() - t0))
            break
コード例 #2
0
def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(
        increment_path(Path(opt.project) / opt.name,
                       exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f'{n} {names[int(c)]}s, '  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (
                            cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        label = f'{names[int(cls)]} {conf:.2f}'
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')
コード例 #3
0
def train(hyp, opt, device, tb_writer=None):
    logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # data dict
    is_coco = opt.data.endswith('coco.yaml')

    # Logging- Doing this before checking the dataset. Might update data_dict
    loggers = {'wandb': None}  # loggers dict
    if rank in [-1, 0]:
        opt.hyp = hyp  # add hyperparameters
        run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
        wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict, mode=WANDB_MODE)
        loggers['wandb'] = wandb_logger.wandb
        data_dict = wandb_logger.data_dict
        if wandb_logger.wandb:
            weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # WandbLogger might update weights, epochs if resuming

    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
        exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else []  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
        if epochs < start_epoch:
            logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                        (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[-1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Trainloader
    dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
                                            hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
                                            world_size=opt.world_size, workers=opt.workers,
                                            image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt,  # testloader
                                       hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
                                       world_size=opt.world_size, workers=opt.workers,
                                       pad=0.5, prefix=colorstr('val: '))[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
                    # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
                    find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
                dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 + '%10.4g' * 6) % (
                    '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), [])  # add model graph
                elif plots and ni == 10 and wandb_logger.wandb:
                    wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
                                                  save_dir.glob('train*.jpg') if x.exists()]})

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                wandb_logger.current_epoch = epoch + 1
                results, maps, times = test.test(data_dict,
                                                 batch_size=batch_size * 2,
                                                 imgsz=imgsz_test,
                                                 model=ema.ema,
                                                 single_cls=opt.single_cls,
                                                 dataloader=testloader,
                                                 save_dir=save_dir,
                                                 verbose=nc < 50 and final_epoch,
                                                 plots=plots and final_epoch,
                                                 wandb_logger=wandb_logger,
                                                 compute_loss=compute_loss,
                                                 is_coco=is_coco)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results + '\n')  # append metrics, val_loss
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))

            # Log
            tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss',  # train loss
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
                    'val/box_loss', 'val/obj_loss', 'val/cls_loss',  # val loss
                    'x/lr0', 'x/lr1', 'x/lr2']  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb_logger.wandb:
                    wandb_logger.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
            wandb_logger.end_epoch(best_result=best_fitness == fi)

            # Save model
            if (not opt.nosave) or (final_epoch and not opt.evolve):  # if save
                ckpt = {'epoch': epoch,
                        'best_fitness': best_fitness,
                        'training_results': results_file.read_text(),
                        'model': deepcopy(model.module if is_parallel(model) else model).half(),
                        'ema': deepcopy(ema.ema).half(),
                        'updates': ema.updates,
                        'optimizer': optimizer.state_dict(),
                        'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if wandb_logger.wandb:
                    if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
                        wandb_logger.log_model(
                            last.parent, opt, epoch, fi, best_model=best_fitness == fi)
                del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training
    if rank in [-1, 0]:
        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb_logger.wandb:
                files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
                wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
                                              if (save_dir / f).exists()]})
        # Test best.pt
        logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            for m in (last, best) if best.exists() else (last):  # speed, mAP tests
                results, _, _ = test.test(opt.data,
                                          batch_size=batch_size * 2,
                                          imgsz=imgsz_test,
                                          conf_thres=0.001,
                                          iou_thres=0.7,
                                          model=attempt_load(m, device).half(),
                                          single_cls=opt.single_cls,
                                          dataloader=testloader,
                                          save_dir=save_dir,
                                          save_json=True,
                                          plots=False,
                                          is_coco=is_coco)

        # Strip optimizers
        final = best if best.exists() else last  # final model
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload
        if wandb_logger.wandb and not opt.evolve:  # Log the stripped model
            wandb_logger.wandb.log_artifact(str(final), type='model',
                                            name='run_' + wandb_logger.wandb_run.id + '_model',
                                            aliases=['last', 'best', 'stripped'])
        wandb_logger.finish_run()
    else:
        dist.destroy_process_group()
    torch.cuda.empty_cache()
    return results
コード例 #4
0
                        default='./yolov5s.pt',
                        help='weights path')  # from yolov5/models/
    parser.add_argument('--img-size',
                        nargs='+',
                        type=int,
                        default=[640, 640],
                        help='image size')  # height, width
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    opt = parser.parse_args()
    opt.img_size *= 2 if len(opt.img_size) == 1 else 1  # expand
    print(opt)
    set_logging()
    t = time.time()

    # Load PyTorch model
    model = attempt_load(opt.weights,
                         map_location=torch.device('cpu'))  # load FP32 model
    labels = model.names

    # Checks
    gs = int(max(model.stride))  # grid size (max stride)
    opt.img_size = [check_img_size(x, gs)
                    for x in opt.img_size]  # verify img_size are gs-multiples

    # Input
    img = torch.zeros(opt.batch_size, 3,
                      *opt.img_size)  # image size(1,3,320,192) iDetection

    # Update model
    for k, m in model.named_modules():
        m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibility
        if isinstance(
コード例 #5
0
ファイル: test.py プロジェクト: injeChoi/yolov5_child
def test(
        data,
        weights=None,
        batch_size=32,
        imgsz=640,
        conf_thres=0.001,
        iou_thres=0.6,  # for NMS
        save_json=False,
        single_cls=False,
        augment=False,
        verbose=False,
        model=None,
        dataloader=None,
        save_dir=Path(''),  # for saving images
        save_txt=False,  # for auto-labelling
        save_hybrid=False,  # for hybrid auto-labelling
        save_conf=False,  # save auto-label confidences
        plots=True,
        wandb_logger=None,
        compute_loss=None,
        half_precision=True,
        is_coco=False,
        opt=None):
    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        set_logging()
        device = select_device(opt.device, batch_size=batch_size)

        # Directories
        save_dir = increment_path(Path(opt.project) / opt.name,
                                  exist_ok=opt.exist_ok)  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(
            parents=True, exist_ok=True)  # make dir

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        gs = max(int(model.stride.max()), 32)  # grid size (max stride)
        imgsz = check_img_size(imgsz, s=gs)  # check img_size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    # Half
    half = device.type != 'cpu' and half_precision  # half precision only supported on CUDA
    if half:
        model.half()

    # Configure
    model.eval()
    if isinstance(data, str):
        is_coco = data.endswith('coco.yaml')
        with open(data) as f:
            data = yaml.safe_load(f)
    check_dataset(data)  # check
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95,
                          10).to(device)  # iou vector for [email protected]:0.95
    niou = iouv.numel()

    # Logging
    log_imgs = 0
    if wandb_logger and wandb_logger.wandb:
        log_imgs = min(wandb_logger.log_imgs, 100)
    # Dataloader
    if not training:
        if device.type != 'cpu':
            model(
                torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                    next(model.parameters())))  # run once
        task = opt.task if opt.task in (
            'train', 'val', 'test') else 'val'  # path to train/val/test images
        dataloader = create_dataloader(data[task],
                                       imgsz,
                                       batch_size,
                                       gs,
                                       single_cls,
                                       pad=0.5,
                                       rect=True,
                                       prefix=colorstr(f'{task}: '))[0]

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    names = {
        k: v
        for k, v in enumerate(
            model.names if hasattr(model, 'names') else model.module.names)
    }
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R',
                                 '[email protected]', '[email protected]:.95')
    p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
    for batch_i, (img, targets, paths,
                  shapes) in enumerate(tqdm(dataloader, desc=s)):
        img = img.to(device, non_blocking=True)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width

        # Run model
        t = time_synchronized()
        out, train_out = model(
            img, augment=augment)  # inference and training outputs
        t0 += time_synchronized() - t

        # Compute loss
        if compute_loss:
            loss += compute_loss([x.float() for x in train_out],
                                 targets)[1][:3]  # box, obj, cls

        # Run NMS
        targets[:, 2:] *= torch.Tensor([width, height, width,
                                        height]).to(device)  # to pixels
        lb = [targets[targets[:, 0] == i, 1:]
              for i in range(nb)] if save_hybrid else []  # for autolabelling
        t = time_synchronized()
        out = non_max_suppression(out,
                                  conf_thres,
                                  iou_thres,
                                  labels=lb,
                                  multi_label=True,
                                  agnostic=single_cls)
        t1 += time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(out):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path = Path(paths[si])
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                  torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            if single_cls:
                pred[:, 5] = 0
            predn = pred.clone()
            scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0],
                         shapes[si][1])  # native-space pred

            # Append to text file
            if save_txt:
                gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0
                                                  ]]  # normalization gain whwh
                for *xyxy, conf, cls in predn.tolist():
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                            gn).view(-1).tolist()  # normalized xywh
                    line = (cls, *xywh,
                            conf) if save_conf else (cls,
                                                     *xywh)  # label format
                    with open(save_dir / 'labels' / (path.stem + '.txt'),
                              'a') as f:
                        f.write(('%g ' * len(line)).rstrip() % line + '\n')

            # W&B logging - Media Panel Plots
            if len(
                    wandb_images
            ) < log_imgs and wandb_logger.current_epoch > 0:  # Check for test operation
                if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
                    box_data = [{
                        "position": {
                            "minX": xyxy[0],
                            "minY": xyxy[1],
                            "maxX": xyxy[2],
                            "maxY": xyxy[3]
                        },
                        "class_id": int(cls),
                        "box_caption": "%s %.3f" % (names[cls], conf),
                        "scores": {
                            "class_score": conf
                        },
                        "domain": "pixel"
                    } for *xyxy, conf, cls in pred.tolist()]
                    boxes = {
                        "predictions": {
                            "box_data": box_data,
                            "class_labels": names
                        }
                    }  # inference-space
                    wandb_images.append(
                        wandb_logger.wandb.Image(img[si],
                                                 boxes=boxes,
                                                 caption=path.name))
            wandb_logger.log_training_progress(
                predn, path,
                names) if wandb_logger and wandb_logger.wandb_run else None

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(
                    path.stem) if path.stem.isnumeric() else path.stem
                box = xyxy2xywh(predn[:, :4])  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({
                        'image_id':
                        image_id,
                        'category_id':
                        coco91class[int(p[5])] if is_coco else int(p[5]),
                        'bbox': [round(x, 3) for x in b],
                        'score':
                        round(p[4], 5)
                    })

            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0],
                                  niou,
                                  dtype=torch.bool,
                                  device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5])
                scale_coords(img[si].shape[1:], tbox, shapes[si][0],
                             shapes[si][1])  # native-space labels
                if plots:
                    confusion_matrix.process_batch(
                        predn, torch.cat((labels[:, 0:1], tbox), 1))

                # Per target class
                for cls in torch.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(
                        -1)  # target indices
                    pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(
                        -1)  # prediction indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        ious, i = box_iou(predn[pi, :4], tbox[ti]).max(
                            1)  # best ious, indices

                        # Append detections
                        detected_set = set()
                        for j in (ious > iouv[0]).nonzero(as_tuple=False):
                            d = ti[i[j]]  # detected target
                            if d.item() not in detected_set:
                                detected_set.add(d.item())
                                detected.append(d)
                                correct[
                                    pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(
                                        detected
                                ) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append(
                (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Plot images
        if plots and batch_i < 3:
            f = save_dir / f'test_batch{batch_i}_labels.jpg'  # labels
            Thread(target=plot_images,
                   args=(img, targets, paths, f, names),
                   daemon=True).start()
            f = save_dir / f'test_batch{batch_i}_pred.jpg'  # predictions
            Thread(target=plot_images,
                   args=(img, output_to_target(out), paths, f, names),
                   daemon=True).start()

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        p, r, ap, f1, ap_class = ap_per_class(*stats,
                                              plot=plots,
                                              save_dir=save_dir,
                                              names=names)
        ap50, ap = ap[:, 0], ap.mean(1)  # [email protected], [email protected]:0.95
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64),
                         minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%11i' * 2 + '%11.3g' * 4  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3
              for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size)  # tuple
    if not training:
        print(
            'Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g'
            % t)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
        if wandb_logger and wandb_logger.wandb:
            val_batches = [
                wandb_logger.wandb.Image(str(f), caption=f.name)
                for f in sorted(save_dir.glob('test*.jpg'))
            ]
            wandb_logger.log({"Validation": val_batches})
    if wandb_images:
        wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights
                 ).stem if weights is not None else ''  # weights
        anno_json = '../coco/annotations/instances_val2017.json'  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            check_requirements(['pycocotools'])
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [
                    int(Path(x).stem) for x in dataloader.dataset.img_files
                ]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:
                                    2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            print(f'pycocotools unable to run: {e}')

    # Return results
    model.float()  # for training
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map,
            *(loss.cpu() / len(dataloader)).tolist()), maps, t
コード例 #6
0
def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))
    all_file = glob.glob(source.replace('valid', '*') + '*.jpg')
    valid_file = glob.glob(source + '*.jpg')
    test_file = glob.glob(source.replace('valid', 'test') + '*.jpg')

    # Directories
    save_dir = Path(
        increment_path(Path(opt.project) / opt.name,
                       exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once
    count = 0
    error_list = []

    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = Path(path[i]), '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = Path(path), '', im0s

            save_path = str(save_dir / p.name)
            # print(p.parents[1])
            with open(str(p.parents[1]) + '/labels/' + p.name.split('.')[0] +
                      '.txt',
                      'r',
                      encoding='utf-8') as f:
                result_str = f.read()
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            result_lsit = []
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (
                            cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        result_lsit.append(names[int(cls)])
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))
            print("answer : " +
                  names[int(result_str.split('\n')[0].split(' ')[0])])
            if names[int(result_str.split('\n')[0].split(' ')
                         [0])] not in result_lsit:
                # if count < len(all_file)//100:
                error_list.append(
                    str(p.parents[1]) + '/*/{}.*'.format(p.name.split('.')[0]))
                count += 1

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)
        # if count >= len(all_file)//100:
        #     with open('tmp/ok.txt', 'w', encoding='utf-8') as f:
        #         f.write('true')
        #     break

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    if len(error_list) == 0:
        with open('tmp/really_ok.txt', 'w', encoding='utf-8') as f:
            f.write('false')
    else:
        for i, ff in enumerate(error_list):
            if i < len(error_list) * 0.9:
                shutil.move(ff, ff.replace('test', 'train'))
            elif i < len(error_list):
                shutil.move(ff, ff.replace('test', 'valid'))
    # if 0 < len(test_file) < max(len(all_file)//100, 100):
    #     fff = glob.glob(source.replace('valid', 'test')+'*.*')
    #     for i, ff in enumerate(fff):
    #         if i < int((len(fff))*0.8):
    #             shutil.move(ff, ff.replace('test', 'train'))
    #         else:
    #             shutil.move(ff, ff.replace('test', 'valid'))
    # elif len(test_file) == 0:
    #     with open('tmp/ok.txt', 'w', encoding='utf-8') as f:
    #         f.write('false')
    print('Done. (%.3fs)' % (time.time() - t0))
    torch.cuda.empty_cache()
コード例 #7
0
# half = device.type != 'cpu'  # half precision only supported on CUDA
# print(half)
#
# # Load model
# model = attempt_load('best_new_single_gun.pt',map_location=torch.device("cuda"))  # load FP32 model
# # imgsz = check_img_size(416, s=model.stride.max())  # check img_size
# if half:
#     model.half()  # to FP16

set_logging()
device = select_device('')
#old_only_gun
# model = attempt_load('best_new_single_gun.pt',
#                          map_location=torch.device("cuda"))
#for_Human_shortgun_handgun_swords
model = attempt_load('Weaponwithalbumentationbest.pt',
                     map_location=torch.device("cuda"))
half = device.type != 'cpu'
model.half()

net = C3D()
net.load_state_dict(torch.load('C3D_Accu_90.pt'))
net.cuda()
net.eval()


def read_labels_from_file(filepath):
    with open(filepath, 'r', encoding="utf8") as f:
        labels = [line.strip() for line in f.readlines()]
    return labels

コード例 #8
0
ファイル: waitdetect_v5.py プロジェクト: tjswn9727/Beer_Catch
def detect(save_img=False):
    save_dir, source, weights, view_img, save_txt, imgsz = \
        Path(opt.save_dir), opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith('.txt') or \
             source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))

    # Directories
    if save_dir == Path('runs/detect'):  # if default
        save_dir.mkdir(parents=True, exist_ok=True)  # make base
        save_dir = Path(increment_dir(save_dir / 'exp',
                                      opt.name))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make new dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA
    cleardir(source)
    cleardir(save_dir)

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    modelc = models.resnet18(pretrained=True)
    #     modelc = EfficientNet.from_pretrained('efficientnet-b0', num_classes=37)

    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    ## Classification model
    num_ftrs = modelc.fc.in_features
    #     Here the size of each output sample is set to 2.
    #     Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
    modelc.fc = nn.Linear(num_ftrs, len(class_names))  # Generalized 할것
    modelc.load_state_dict(
        torch.load('forServiceTest/weights/resnet18_48class.pt'))
    #     modelc.load_state_dict(torch.load('forServiceTest/weights/b0.pt'))

    # Second-stage classifier
    #     classify = False
    #     if classify:
    #         modelc = load_classifier(name='resnet101', n=2)  # initialize
    #         modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weights
    #         modelc.to(device).eval()

    # Eval mode
    #     model.to(device).eval()
    modelc.to(device).eval()

    # Fuse Conv2d + BatchNorm2d layers
    # model.fuse()

    # Export mode
    #     if ONNX_EXPORT:
    #         model.fuse()
    #         img = torch.zeros((1, 3) + imgsz)  # (1, 3, 320, 192)
    #         f = opt.weights.replace(opt.weights.split('.')[-1], 'onnx')  # *.onnx filename
    #         torch.onnx.export(model, img, f, verbose=False, opset_version=11,
    #                           input_names=['images'], output_names=['classes', 'boxes'])

    #         # Validate exported model
    #         import onnx
    #         model = onnx.load(f)  # Load the ONNX model
    #         onnx.checker.check_model(model)  # Check that the IR is well formed
    #         print(onnx.helper.printable_graph(model.graph))  # Print a human readable representation of the graph
    #         return

    # Iterate detection process
    print('Start detection process')
    while True:
        # Wait for source file to arrive.
        if len(os.listdir(source)) < 1:
            #             print("no source")
            #             time.sleep(3)
            continue

        cleardir(save_dir)

        # Set Dataloader
        vid_path, vid_writer = None, None
        if webcam:
            view_img = True
            cudnn.benchmark = True  # set True to speed up constant image size inference
            dataset = LoadStreams(source, img_size=imgsz)
        else:
            save_img = True
            dataset = LoadImages(source, img_size=imgsz)

        # Get names and colors
        names = model.module.names if hasattr(model, 'module') else model.names
        colors = [[random.randint(0, 255) for _ in range(3)]
                  for _ in range(len(names))]

        ###
        # Run inference
        t0 = time.time()
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img
                  ) if device.type != 'cpu' else None  # run once
        for path, img, im0s, vid_cap in dataset:
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)

            # Inference
            t1 = time_synchronized()
            pred = model(img, augment=opt.augment)[0]

            # Apply NMS
            pred = non_max_suppression(pred,
                                       opt.conf_thres,
                                       opt.iou_thres,
                                       classes=opt.classes,
                                       agnostic=opt.agnostic_nms)
            t2 = time_synchronized()

            # Apply Classifier
            #             if classify:
            #                 pred = apply_classifier(pred, modelc, img, im0s)

            # Process detections
            for i, det in enumerate(pred):  # detections per image
                if webcam:  # batch_size >= 1
                    p, s, im0 = Path(path[i]), '%g: ' % i, im0s[i].copy()
                else:
                    p, s, im0 = Path(path), '', im0s

                save_path = str(save_dir / p.name)
                txt_path = str(save_dir / 'labels' / p.stem) + (
                    '_%g' % dataset.frame if dataset.mode == 'video' else '')
                s += '%gx%g ' % img.shape[2:]  # print string
                #                 gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                if det is not None and len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                              im0.shape).round()

                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        s += '%g %ss, ' % (n, names[int(c)])  # add to string

                    # Crop detected images
                    queryDic = {}  # { 'file_name' : [x, y, x, y, id] }
                    for j, x in enumerate(det.cpu().numpy()):
                        h, w = im0s.shape[:2]
                        crop_name = 'crop_%g.jpg' % j

                        coord = x[:4].astype(np.int)
                        crop_img = im0s[coord[1]:coord[3], coord[0]:coord[2]]

                        # Make query dicionary for webserver
                        queryDic[crop_name] = list(coord)

                        assert cv2.imwrite(
                            '%s/%s' % (save_dir, crop_name),
                            crop_img), 'Failure extracting classifier boxes'
#                         print('Crop_%g saved' % j)

# Write results
#                     for *xyxy, conf, cls in reversed(det):
#                         if save_txt:  # Write to file
#                             xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
#                             line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
#                             with open(txt_path + '.txt', 'a') as f:
#                                 f.write(('%g ' * len(line) + '\n') % line)

#                         if save_img or view_img:  # Add bbox to image
#                             label = '%s %.2f' % (names[int(cls)], conf)
#                             plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)

# Print time (inference + NMS)
                print('%sDone. (%.3fs)' % (s, t2 - t1))

                # Stream results
                if view_img:
                    cv2.imshow(p, im0)
                    if cv2.waitKey(1) == ord('q'):  # q to quit
                        raise StopIteration

                # Save results (image with detections)
#                 if save_img:
#                     if dataset.mode == 'images':
#                         cv2.imwrite(save_path, im0)
#                     else:
#                         if vid_path != save_path:  # new video
#                             vid_path = save_path
#                             if isinstance(vid_writer, cv2.VideoWriter):
#                                 vid_writer.release()  # release previous video writer

#                             fourcc = 'mp4v'  # output video codec
#                             fps = vid_cap.get(cv2.CAP_PROP_FPS)
#                             w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
#                             h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
#                             vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
#                         vid_writer.write(im0)

            print('Dectect Done. (%.3fs)' % (time.time() - t0))

            # Classify

            preprocess = transforms.Compose([
                transforms.Resize((224, 224)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
            ])

            # TODO:listdir 개수가 0이면 캔 recognition이 안된 것, 나중에 처리하기.
            crop_list = os.listdir(save_dir)

            if len(crop_list) < 1:
                print('Nothing found')

                web_path = '/home/K/Dev/webserver/result/result.json'
                with open(web_path, 'w') as f:
                    json.dump([], f)
                break

            list.sort(crop_list)

            for crop_name in crop_list:
                img_can = Image.open('%s/%s' %
                                     (save_dir, crop_name)).convert('RGB')
                img_can = preprocess(img_can)
                inputs = torch.unsqueeze(img_can, 0)
                inputs = inputs.to(device)
                outputs = modelc(inputs)

                _, preds = torch.max(outputs, 1)
                ### TODO:여기서 전체적으로 일정 컨피던스 아래면 '없다' 판정

                predict = int(preds[0].cpu())
                queryDic[crop_name].append(predict)  # 여기 값에 좌표와 id 담겨있음.

                confidence = torch.nn.functional.softmax(outputs,
                                                         dim=1)[0] * 100
                if confidence[predict].item() > 0:
                    print('[%-10s -> %-10s : %g]' %
                          (crop_name, class_names[predict],
                           confidence[predict].item()))

                    scores, indices = torch.topk(confidence, 5)
                    scores = scores.cpu().numpy()
                    scores = np.floor(scores * 1000) / 1000
                    indices = indices.cpu().numpy()

                    print(
                        list(
                            zip([class_names[index] for index in indices],
                                scores)))
                    print()

            print('Classify Done. (%.3fs)' % (time.time() - t0))

            # Send results to webserver
            result = []
            val_names = ['x1', 'y1', 'x2', 'y2', 'id']

            for v in sorted(queryDic.values(), key=lambda x: x[0]):
                result.append(dict(zip(val_names, list(map(int, v)))))

#             web_path = '/home/K/Dev/webserver/result/result.json'
#             with open(web_path, 'w') as f:
#                 json.dump(result, f)

#             # Apply Classifier -> 안먹힘
#             if classify:
#                 pred = apply_classifier(pred, modelc, img, im0s)
        print('\nWaiting for next query...')

        # 디버깅용 소스 이미지 복사
        #             shutil.copyfile('%s/source.izg'source, '%s/source.img' % out)
        cleardir(source)
コード例 #9
0
def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    #create a multi object tracker
    tracker = MultiObjectTracker(dt=0.1)

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Set timecounter
    time_counter = time.time()

    # People Counter
    person_id_list = []

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)


        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                out_detections = []
                for *xyxy, conf, cls in reversed(det):
                    object_box = np.array([int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])])
                    out_detections.append(Detection(box=object_box, score=conf.to('cpu')))

                tracker.step(out_detections)
                tracks = tracker.active_tracks(3)

                for track in tracks:
                    label = f'{track.id[:5]}'
                    plot_one_box(track.box, im0, label=label, color=colors[int(cls    )], line_thickness=3)
                    person_id_list.append(track.id)


            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Record 
            if (time.time() - time_counter) > (60 * 1):
              time_counter = time.time()
              
              person_count = len(set(person_id_list))
              print(person_count)
              person_id_list = []

              if opt.ambient_channel:
                print('Send Ambient')
                send_data_to_cloud(person_count)

    print(f'Done. ({time.time() - t0:.3f}s)')
コード例 #10
0
def detect(out,
           source,
           weights,
           view_img,
           save_txt,
           imgsz,
           save_img=False,
           device='cpu'):
    """Detection function for YOLOv5, inspired by YOLOv5 detect.py
       see source: https://github.com/ultralytics/yolov5/blob/master/detect.py

    Args:
        out (str): output dir, default: inference/output
        source (str): source to be inferenced, default: inference/images
        weights (str): pretained weight source, 'yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt'; default: 'yolov5s.pt'
        view_img (bool): if display image inferenced, default: False
        save_txt (bool): if save results to txt file, default: False
        imgsz (int): image size, default: 640
        save_img (bool, optional): if save image to output. Defaults to False.
        device (str, optional): cuda device, o, or o,1,2,3 or cpu. Defaults to 'cpu'.

    Raises:
        StopIteration: [description]
    """
    output_dict = {}
    out, source, weights, view_img, save_txt, imgsz = \
        out, source, weights, view_img, save_txt, imgsz
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')

    # Initialize
    device = select_device(device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        per_img_dict = {}
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=False)[0]
        # Apply NMS
        pred = non_max_suppression(pred, 0.4, 0.5, classes=0, agnostic=None)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)
        to_ratio = np.array(
            [img.shape[3], img.shape[2], img.shape[3], img.shape[2]])
        per_img_dict["location_x"] = (pred[0][:, :4].numpy() /
                                      to_ratio).tolist()
        per_img_dict["confidence"] = pred[0][:, 4].numpy().tolist()
        per_img_dict["category"] = pred[0][:, 5].numpy().tolist()
        output_dict[path] = per_img_dict
        with open(out + 'json_out.txt', 'w') as outfile:
            json.dump(output_dict, outfile)
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            txt_path = str(Path(out) / Path(p).stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in det:
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * 5 + '\n') %
                                    (cls, *xywh))  # label format

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin' and not opt.update:  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
コード例 #11
0
ファイル: detect.py プロジェクト: tayyabmujahid/yolov5
def detect(opt):
    source, weights, view_img, save_txt, archive, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.archive, opt.img_size
    save_img = not opt.nosave and not source.endswith(
        '.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(
            ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = increment_path(Path(opt.project) / opt.name,
                              exist_ok=opt.exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    print('len models : ', type(model))
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    names = model.module.names if hasattr(
        model, 'module') else model.names  # get class names
    print(names)
    if archive:
        import os
        os.mkdir(str(save_dir / 'archive'))
        os.mkdir(str(save_dir / 'archive' / 'images'))
        os.mkdir(str(save_dir / 'archive' / 'obj_train_data'))
        archive_obj_data = str(save_dir / 'archive' / 'obj.data')
        archive_obj_names = str(save_dir / 'archive' / 'obj.names')

        with open(archive_obj_data, 'w') as fod:
            obj_data = f'classes = {len(names)}\ntrain = data/train.txt\n' \
                       f'names = data/obj.names\n' \
                       f'backup = backup/'
            fod.write(obj_data)
        with open(archive_obj_names, 'w') as fon:
            fon.writelines([i + '\n' for i in names])
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Run inference
    if device.type != 'cpu':
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   opt.classes,
                                   opt.agnostic_nms,
                                   max_det=opt.max_det)
        t2 = time_synchronized()
        print(type(pred))
        print(pred)

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            print('-----', i)
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(
                    dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            if archive:
                archive_save_path = str(save_dir / 'archive' / 'images' /
                                        p.name)

                txt_path = str(save_dir / 'archive' / 'obj_train_data' /
                               p.stem) + ('' if dataset.mode == 'image' else
                                          f'_{frame}')  # img.txt
                archive_train_txt_path = str(save_dir / 'archive' /
                                             'train.txt')

                with open(txt_path + '.txt', 'w') as f:
                    pass
                with open(archive_train_txt_path, 'a') as ftt:
                    train_txt = f'data/obj_train_data/{p.name}\n'
                    ftt.write(train_txt)
                shutil.copy(str(p),
                            archive_save_path)  # copy image to archive folder

            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if opt.save_crop else im0  # for opt.save_crop
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (
                            cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or opt.save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if opt.hide_labels else (
                            names[c]
                            if opt.hide_conf else f'{names[c]} {conf:.2f}')
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors(c, True),
                                     line_thickness=opt.line_thickness)
                        if opt.save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)
                            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')
コード例 #12
0
ファイル: app.py プロジェクト: tckrishna/yolov5
device = "cpu"
output_name = ""
save_img = True
img_path = "result/img/"

# load in weights and classes
# Initialize
# set_logging()
device = select_device(device)

if not os.path.exists(text_path):
    # shutil.rmtree(text_path)  # delete output folder
    os.makedirs(text_path)  # make new output folder

# Load model
model = attempt_load(weights)  # load FP32 model
image_size = check_img_size(image_size, s=model.stride.max())  # check img_size
print('weights loaded')

# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)]
          for _ in range(len(names))]
print('classes loaded')

# # Initialize Flask application
# app = Flask(__name__)


# route http posts to this method
@app.route('/test')
コード例 #13
0
ファイル: stream.py プロジェクト: gwalch514/hackatown2021_gui
def detect():
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))

    # Initialize
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    if device.type != 'cpu':
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()

    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)

            # TODO: send im0 and/or p over the network to the client

            # TODO: The following section can be removed if im0 is sent to client
            #       this will increase performance
            # Display results in a window
            if view_img:
                cv2.imshow(str(p), im0)
コード例 #14
0
def train(hyp, opt, device,
          callbacks):  # hyp is path/to/hyp.yaml or hyp dictionary
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
    callbacks.run('on_pretrain_routine_start')

    # Directories
    w = save_dir / 'weights'  # weights dir
    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
    last, best = w / 'last.pt', w / 'best.pt'

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp, errors='ignore') as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    LOGGER.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))

    # Save run settings
    if not evolve:
        with open(save_dir / 'hyp.yaml', 'w') as f:
            yaml.safe_dump(hyp, f, sort_keys=False)
        with open(save_dir / 'opt.yaml', 'w') as f:
            yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Loggers
    data_dict = None
    if RANK in {-1, 0}:
        loggers = Loggers(save_dir, weights, opt, hyp,
                          LOGGER)  # loggers instance
        if loggers.wandb:
            data_dict = loggers.wandb.data_dict
            if resume:
                weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size

        # Register actions
        for k in methods(loggers):
            callbacks.register_action(k, callback=getattr(loggers, k))

    # Config
    plots = not evolve and not opt.noplots  # create plots
    cuda = device.type != 'cpu'
    init_seeds(opt.seed + 1 + RANK, deterministic=True)
    with torch_distributed_zero_first(LOCAL_RANK):
        data_dict = data_dict or check_dataset(data)  # check if None
    train_path, val_path = data_dict['train'], data_dict['val']
    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(
        names
    ) == nc, f'{len(names)} names found for nc={nc} dataset in {data}'  # check
    is_coco = isinstance(val_path, str) and val_path.endswith(
        'coco/val2017.txt')  # COCO dataset

    # Model
    check_suffix(weights, '.pt')  # check weights
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(LOCAL_RANK):
            weights = attempt_download(
                weights)  # download if not found locally
        ckpt = torch.load(weights, map_location='cpu'
                          )  # load checkpoint to CPU to avoid CUDA memory leak
        model = Model(cfg or ckpt['model'].yaml,
                      ch=3,
                      nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
        exclude = [
            'anchor'
        ] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        csd = ckpt['model'].float().state_dict(
        )  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, model.state_dict(),
                              exclude=exclude)  # intersect
        model.load_state_dict(csd, strict=False)  # load
        LOGGER.info(
            f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}'
        )  # report
    else:
        model = Model(cfg, ch=3, nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
    amp = check_amp(model)  # check AMP

    # Freeze
    freeze = [
        f'model.{x}.'
        for x in (freeze if len(freeze) > 1 else range(freeze[0]))
    ]  # layers to freeze
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            LOGGER.info(f'freezing {k}')
            v.requires_grad = False

    # Image size
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    imgsz = check_img_size(opt.imgsz, gs,
                           floor=gs * 2)  # verify imgsz is gs-multiple

    # Batch size
    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
        batch_size = check_train_batch_size(model, imgsz, amp)
        loggers.on_params_update({"batch_size": batch_size})

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    g = [], [], []  # optimizer parameter groups
    bn = tuple(v for k, v in nn.__dict__.items()
               if 'Norm' in k)  # normalization layers, i.e. BatchNorm2d()
    for v in model.modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # bias
            g[2].append(v.bias)
        if isinstance(v, bn):  # weight (no decay)
            g[1].append(v.weight)
        elif hasattr(v, 'weight') and isinstance(
                v.weight, nn.Parameter):  # weight (with decay)
            g[0].append(v.weight)

    if opt.optimizer == 'Adam':
        optimizer = Adam(g[2], lr=hyp['lr0'],
                         betas=(hyp['momentum'],
                                0.999))  # adjust beta1 to momentum
    elif opt.optimizer == 'AdamW':
        optimizer = AdamW(g[2], lr=hyp['lr0'],
                          betas=(hyp['momentum'],
                                 0.999))  # adjust beta1 to momentum
    else:
        optimizer = SGD(g[2],
                        lr=hyp['lr0'],
                        momentum=hyp['momentum'],
                        nesterov=True)

    optimizer.add_param_group({
        'params': g[0],
        'weight_decay': hyp['weight_decay']
    })  # add g0 with weight_decay
    optimizer.add_param_group({'params': g[1]})  # add g1 (BatchNorm2d weights)
    LOGGER.info(
        f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
        f"{len(g[1])} weight (no decay), {len(g[0])} weight, {len(g[2])} bias")
    del g

    # Scheduler
    if opt.cos_lr:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    else:
        lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'
                                                                   ]  # linear
    scheduler = lr_scheduler.LambdaLR(
        optimizer,
        lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in {-1, 0} else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if resume:
            assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
        if epochs < start_epoch:
            LOGGER.info(
                f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs."
            )
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, csd

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        LOGGER.warning(
            'WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
            'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.'
        )
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        LOGGER.info('Using SyncBatchNorm()')

    # Trainloader
    train_loader, dataset = create_dataloader(
        train_path,
        imgsz,
        batch_size // WORLD_SIZE,
        gs,
        single_cls,
        hyp=hyp,
        augment=True,
        cache=None if opt.cache == 'val' else opt.cache,
        rect=opt.rect,
        rank=LOCAL_RANK,
        workers=workers,
        image_weights=opt.image_weights,
        quad=opt.quad,
        prefix=colorstr('train: '),
        shuffle=True)
    mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max())  # max label class
    nb = len(train_loader)  # number of batches
    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'

    # Process 0
    if RANK in {-1, 0}:
        val_loader = create_dataloader(val_path,
                                       imgsz,
                                       batch_size // WORLD_SIZE * 2,
                                       gs,
                                       single_cls,
                                       hyp=hyp,
                                       cache=None if noval else opt.cache,
                                       rect=True,
                                       rank=-1,
                                       workers=workers * 2,
                                       pad=0.5,
                                       prefix=colorstr('val: '))[0]

        if not resume:
            labels = np.concatenate(dataset.labels, 0)
            # c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

        callbacks.run('on_pretrain_routine_end')

    # DDP mode
    if cuda and RANK != -1:
        if check_version(torch.__version__, '1.11.0'):
            model = DDP(model,
                        device_ids=[LOCAL_RANK],
                        output_device=LOCAL_RANK,
                        static_graph=True)
        else:
            model = DDP(model,
                        device_ids=[LOCAL_RANK],
                        output_device=LOCAL_RANK)

    # Model attributes
    nl = de_parallel(
        model).model[-1].nl  # number of detection layers (to scale hyps)
    hyp['box'] *= 3 / nl  # scale to layers
    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3 / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             100)  # number of warmup iterations, max(3 epochs, 100 iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = torch.cuda.amp.GradScaler(enabled=amp)
    stopper, stop = EarlyStopping(patience=opt.patience), False
    compute_loss = ComputeLoss(model)  # init loss class
    callbacks.run('on_train_start')
    LOGGER.info(
        f'Image sizes {imgsz} train, {imgsz} val\n'
        f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
        f"Logging results to {colorstr('bold', save_dir)}\n"
        f'Starting training for {epochs} epochs...')
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        callbacks.run('on_train_epoch_start')
        model.train()

        # Update image weights (optional, single-GPU only)
        if opt.image_weights:
            cw = model.class_weights.cpu().numpy() * (
                1 - maps)**2 / nc  # class weights
            iw = labels_to_image_weights(dataset.labels,
                                         nc=nc,
                                         class_weights=cw)  # image weights
            dataset.indices = random.choices(range(dataset.n),
                                             weights=iw,
                                             k=dataset.n)  # rand weighted idx

        # Update mosaic border (optional)
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(
            ('\n' + '%10s' * 7) %
            ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
        if RANK in {-1, 0}:
            pbar = tqdm(
                pbar, total=nb,
                bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            callbacks.run('on_train_batch_start')
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 0 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(imgs,
                                                     size=ns,
                                                     mode='bilinear',
                                                     align_corners=False)

            # Forward
            with torch.cuda.amp.autocast(amp):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni - last_opt_step >= accumulate:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in {-1, 0}:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
                pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
                                     (f'{epoch}/{epochs - 1}', mem, *mloss,
                                      targets.shape[0], imgs.shape[-1]))
                callbacks.run('on_train_batch_end', ni, model, imgs, targets,
                              paths, plots)
                if callbacks.stop_training:
                    return
            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        if RANK in {-1, 0}:
            # mAP
            callbacks.run('on_train_epoch_end', epoch=epoch)
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'names', 'stride',
                                'class_weights'
                            ])
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
            if not noval or final_epoch:  # Calculate mAP
                results, maps, _ = val.run(data_dict,
                                           batch_size=batch_size //
                                           WORLD_SIZE * 2,
                                           imgsz=imgsz,
                                           model=ema.ema,
                                           single_cls=single_cls,
                                           dataloader=val_loader,
                                           save_dir=save_dir,
                                           plots=False,
                                           callbacks=callbacks,
                                           compute_loss=compute_loss)

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            stop = stopper(epoch=epoch, fitness=fi)  # early stop check
            if fi > best_fitness:
                best_fitness = fi
            log_vals = list(mloss) + list(results) + lr
            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness,
                          fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    'epoch': epoch,
                    'best_fitness': best_fitness,
                    'model': deepcopy(de_parallel(model)).half(),
                    'ema': deepcopy(ema.ema).half(),
                    'updates': ema.updates,
                    'optimizer': optimizer.state_dict(),
                    'wandb_id':
                    loggers.wandb.wandb_run.id if loggers.wandb else None,
                    'date': datetime.now().isoformat()
                }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if opt.save_period > 0 and epoch % opt.save_period == 0:
                    torch.save(ckpt, w / f'epoch{epoch}.pt')
                del ckpt
                callbacks.run('on_model_save', last, epoch, final_epoch,
                              best_fitness, fi)

        # EarlyStopping
        if RANK != -1:  # if DDP training
            broadcast_list = [stop if RANK == 0 else None]
            dist.broadcast_object_list(broadcast_list,
                                       0)  # broadcast 'stop' to all ranks
            if RANK != 0:
                stop = broadcast_list[0]
        if stop:
            break  # must break all DDP ranks

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in {-1, 0}:
        LOGGER.info(
            f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.'
        )
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
                if f is best:
                    LOGGER.info(f'\nValidating {f}...')
                    results, _, _ = val.run(
                        data_dict,
                        batch_size=batch_size // WORLD_SIZE * 2,
                        imgsz=imgsz,
                        model=attempt_load(f, device).half(),
                        iou_thres=0.65 if is_coco else
                        0.60,  # best pycocotools results at 0.65
                        single_cls=single_cls,
                        dataloader=val_loader,
                        save_dir=save_dir,
                        save_json=is_coco,
                        verbose=True,
                        plots=plots,
                        callbacks=callbacks,
                        compute_loss=compute_loss)  # val best model with plots
                    if is_coco:
                        callbacks.run('on_fit_epoch_end',
                                      list(mloss) + list(results) + lr, epoch,
                                      best_fitness, fi)

        callbacks.run('on_train_end', last, best, plots, epoch, results)

    torch.cuda.empty_cache()
    return results
コード例 #15
0
ファイル: detect.py プロジェクト: SadSabrina/yoloverfive
def detect(save_img=False):
    dist, source, weights, view_img, save_txt, imgsz = opt.waiting, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(
        increment_path(Path(opt.project) / opt.name,
                       exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = ['fox']
    colors = [[212, 0, 219], [117, 117, 255]]

    is_not_wrote = False  #Sarapultsev's var

    # Run inference
    if device.type != 'cpu':
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()

    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if len(det):
                if len(det) > 1:
                    tmp = []
                    for ob in det:
                        tmp.append(ob[-2])
                    val = (det[-2] == max(tmp)).nonzero(as_tuple=True)[0]
                    for obi in range(len(det)):
                        if obi != val:
                            det[obi][:4] = torch.cuda.FloatTensor([0, 0, 0, 0])

                if dist > 1 and opt.waiting > 1:
                    if opt.is_view_waiting:  #hyperparametr --is_view_waiting

                        det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                                  im0.shape).round()

                        # Print results
                        for c in det[:, -1].unique():
                            n = (det[:, -1] == c).sum()  # detections per class
                            s += f"{n} maybe... wait, wait, wait... "  # add to string

                        # Write results
                        for *xyxy, conf, cls in reversed(det):
                            if save_txt:  # Write to file
                                xywh = (
                                    xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                    gn).view(-1).tolist()  # normalized xywh
                                line = (cls, *xywh,
                                        conf) if opt.save_conf else (
                                            cls, *xywh)  # label format
                                with open(txt_path + '.txt', 'a') as f:
                                    f.write(('%g ' * len(line)).rstrip() %
                                            line + '\n')

                            if save_img or view_img:  # Add bbox to image
                                label = f'maybe... wait'
                                plot_one_box(xyxy,
                                             im0,
                                             label=label,
                                             color=colors[int(cls) + 1],
                                             line_thickness=3)
                    else:
                        is_not_wrote = True
                    dist -= 1
                elif dist == 1:

                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                              im0.shape).round()

                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        if save_txt:  # Write to file
                            xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                    gn).view(-1).tolist()  # normalized xywh
                            line = (cls, *xywh, conf) if opt.save_conf else (
                                cls, *xywh)  # label format
                            with open(txt_path + '.txt', 'a') as f:
                                f.write(('%g ' * len(line)).rstrip() % line +
                                        '\n')

                        if save_img or view_img:  # Add bbox to image
                            label = f'{names[int(cls)]} {conf:.2f}'
                            plot_one_box(xyxy,
                                         im0,
                                         label=label,
                                         color=colors[int(cls)],
                                         line_thickness=3)

                else:
                    raise (
                        'maybe --waiting < 1, it must have arg > 0. Or ask Sarapultsev'
                    )

            else:
                dist = opt.waiting
                is_not_wrote = True

            if is_not_wrote:
                # Stream results
                if view_img:
                    cv2.imshow(str(p), im0)
                    cv2.waitKey(1)  # 1 millisecond

                # Save results (image with detections)
                if save_img:
                    if dataset.mode == 'image':
                        cv2.imwrite(save_path, im0)
                    else:  # 'video'
                        if vid_path != save_path:  # new video
                            vid_path = save_path
                            if isinstance(vid_writer, cv2.VideoWriter):
                                vid_writer.release(
                                )  # release previous video writer

                            fourcc = 'mp4v'  # output video codec
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                            vid_writer = cv2.VideoWriter(
                                save_path, cv2.VideoWriter_fourcc(*fourcc),
                                fps, (w, h))
                        vid_writer.write(im0)

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')
コード例 #16
0
def psuedolabel(data,
         weights=None,
         batch_size=16,
         imgsz=640,
         conf_thres=0.001,
         iou_thres=0.6,  # for NMS
         augment=False,
         pseudo_threshold=.4,
         model=None,
         dataloader=None,
         merge=False):

    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        device = utils.torch_utils.select_device(opt.device, batch_size=batch_size)
        merge = opt.merge  # use Merge NMS, save *.txt labels

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    # Half
    half = device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Configure
    model.eval()
    with open(data) as f:
        data = yaml.load(f, Loader=yaml.FullLoader)  # model dict

    # Dataloader
    if not training:
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
        path = data['extra'] if opt.task == 'extra' else data['val']  # path to val/test images
        dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt,
                                       hyp=None, augment=False, cache=False, pad=0.5, rect=True)[0]

    count = 1
    uncount = 0
    boundary_error = 0

    for batch_i, (img, targets, paths, shapes) in tqdm(enumerate(dataloader), desc="PseudoLabel", mininterval=0.01):
        img = img.to(device, non_blocking=True)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0

        nb, _, height, width = img.shape  # batch size, channels, height, width

        # Disable gradients
        with torch.no_grad():
            # Run model
            inf_out, _ = model(img, augment=augment)  # inference and training outputs

            # Prediction
            output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge)
            plabels, boundary_error = psuedolabel_generation(output, width, height, pseudo_threshold, boundary_error)

            if len(plabels) > 0:
                for i in plabels[:,0].astype('int'):

                    idx = np.where(plabels[:,0] == i)[0]
                    save_labels = plabels[idx]
                    labels = save_labels[:,1:-1]

                    file_name = paths[i].replace('images/extra', 'labels/pseudo').replace('jpg','txt').replace('JPG','txt').replace('png','txt').replace('PNG','txt')

                    if (np.sum(np.isnan(labels)) == 0) and (np.sum(np.isinf(labels)) == 0):
                        np.savetxt(file_name, labels, delimiter=' ',fmt=['%d','%4f','%4f','%4f','%4f'])
                        image = Image.open(paths[i])
                        image.save(paths[i].replace('extra', 'pseudo'))
                        count += 1
                        image.close()

                    else:
                        print(file_name)
                        uncount += 1


    print(f'Completed generating {count} pseudo labels.')
    print(f'Eliminated {uncount} images.')
    print(f'Boundary Error: {boundary_error} objects')
コード例 #17
0
ファイル: test.py プロジェクト: Annaparimbelli/Prova
def test(data,
         weights=None,
         batch_size=16,
         imgsz=640,
         conf_thres=0.001,
         iou_thres=0.6,  # for NMS
         save_json=False,
         single_cls=False,
         augment=False,
         verbose=False,
         model=None,
         dataloader=None,
         save_dir=Path(''),  # for saving images
         save_txt=False,  # for auto-labelling
         plots=True):
    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        set_logging()
        device = select_device(opt.device, batch_size=batch_size)
        save_txt = opt.save_txt  # save *.txt labels
        if save_txt:
            out = Path('inference/output')
            if os.path.exists(out):
                shutil.rmtree(out)  # delete output folder
            os.makedirs(out)  # make new output folder

        # Remove previous
        for f in glob.glob(str(save_dir / 'test_batch*.jpg')):
            os.remove(f)

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    # Half
    half = device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Configure
    model.eval()
    with open(data) as f:
        data = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    check_dataset(data)  # check
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95, 10).to(device)  # iou vector for [email protected]:0.95
    niou = iouv.numel()

    # Dataloader
    if not training:
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
        path = data['test'] if opt.task == 'test' else data['val']  # path to val/test images
        dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt,
                                       hyp=None, augment=False, cache=False, pad=0.5, rect=True)[0]

    seen = 0
    names = model.names if hasattr(model, 'names') else model.module.names
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95')
    p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
        img = img.to(device, non_blocking=True)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width
        whwh = torch.Tensor([width, height, width, height]).to(device)

        # Disable gradients
        with torch.no_grad():
            # Run model
            t = time_synchronized()
            inf_out, train_out = model(img, augment=augment)  # inference and training outputs
            t0 += time_synchronized() - t

            # Compute loss
            if training:  # if model has loss hyperparameters
                loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3]  # box, obj, cls

            # Run NMS
            t = time_synchronized()
            output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres)
            t1 += time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(output):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            seen += 1

            if pred is None:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Append to text file
            if save_txt:
                gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]]  # normalization gain whwh
                x = pred.clone()
                x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1])  # to original
                for *xyxy, conf, cls in x:
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                    with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f:
                        f.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label format

            # Clip boxes to image bounds
            clip_coords(pred, (height, width))

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = Path(paths[si]).stem
                box = pred[:, :4].clone()  # xyxy
                scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1])  # to original shape
                box = xyxy2xywh(box)  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({'image_id': int(image_id) if image_id.isnumeric() else image_id,
                                  'category_id': coco91class[int(p[5])],
                                  'bbox': [round(x, 3) for x in b],
                                  'score': round(p[4], 5)})

            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5]) * whwh

                # Per target class
                for cls in torch.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1)  # prediction indices
                    pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1)  # target indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1)  # best ious, indices

                        # Append detections
                        detected_set = set()
                        for j in (ious > iouv[0]).nonzero(as_tuple=False):
                            d = ti[i[j]]  # detected target
                            if d.item() not in detected_set:
                                detected_set.add(d.item())
                                detected.append(d)
                                correct[pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(detected) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Plot images
        if plots and batch_i < 1:
            f = save_dir / ('test_batch%g_gt.jpg' % batch_i)  # filename
            plot_images(img, targets, paths, str(f), names)  # ground truth
            f = save_dir / ('test_batch%g_pred.jpg' % batch_i)
            plot_images(img, output_to_target(output, width, height), paths, str(f), names)  # predictions

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, fname=save_dir / 'precision-recall_curve.png')
        p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1)  # [P, R, [email protected], [email protected]:0.95]
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%12.3g' * 6  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if verbose and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size)  # tuple
    if not training:
        print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)

    # Save JSON
    if save_json and len(jdict):
        f = 'detections_val2017_%s_results.json' % \
            (weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '')  # filename
        print('\nCOCO mAP with pycocotools... saving %s...' % f)
        with open(f, 'w') as file:
            json.dump(jdict, file)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]
            cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0])  # initialize COCO ground truth api
            cocoDt = cocoGt.loadRes(f)  # initialize COCO pred api
            cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
            cocoEval.params.imgIds = imgIds  # image IDs to evaluate
            cocoEval.evaluate()
            cocoEval.accumulate()
            cocoEval.summarize()
            map, map50 = cocoEval.stats[:2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            print('ERROR: pycocotools unable to run: %s' % e)

    # Return results
    model.float()  # for training
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
コード例 #18
0
ファイル: detect.py プロジェクト: YuTingChow/ALPR
def detect(save_img=False):
    
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.startswith(('rtsp://', 'rtmp://', 'http://')) or source.endswith('.txt')

    # Initialize
    set_logging()
    device = select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16
    #Setup EasyOCR 
    reader = easyocr.Reader(['en']) # need to run only once to load model into memory
    easyocr_whitelist = '0123456789ABCDEFGHIJKLMNPQRSTUVWXYZ'
    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    # colors = [[0,255,0] for _ in range(len(names))]
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)
        im0a = [im0s.copy()] if isinstance(im0s, np.ndarray) else im0s.copy()
        textss = []
        for i, d in enumerate(pred):  # per image
            texts = []
            
            if d is not None and len(d):
                d = d.clone()

                # Rescale boxes from img_size to im0 size
                scale_coords(img.shape[2:], d[:, :4], im0a[i].shape)
                for j, a in enumerate(d):  # per item
                    cutout = im0a[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])].copy()
                    cutout = letterbox(cutout, new_shape=160, color = (0,0,0))[0]
                    cutout = cv2.resize(cutout,(160, 80), interpolation=cv2.INTER_CUBIC)
                    # cv2.imwrite('test%i-%i.jpg' % (j,i), cutout)
                    # Read out license plate character
                    text = reader.readtext(cutout, allowlist=easyocr_whitelist, detail=0, min_size=130, batch_size=8)
                    if(len(text)>0):
                        l=0
                        bestText = ''
                        while len(bestText)>8 or len(bestText) < 1:
                            bestText = text[l]
                            l+=1
                            if l>=len(text):
                                break
                        print(j,' ',bestText)
                        texts.append(bestText)
                    else:
                        texts.append('')
                textss.append(texts)
        # print(textss, len(textss))
        t2 = time_synchronized()
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s
            save_path = str(Path(out) / Path(p).name)
            txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                counter=-1
                for *xyxy, conf, cls in reversed(det):
                    # if(len(xyxy)<1):
                    #     break
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(path.split(sep='/')[-1]+'\t'+textss[i][counter]+'\n')

                    if save_img or view_img:  # Add bbox to image
                        # print(len(textss), i, counter)
                        if(len(textss) > 0):
                            label = '%s %.2f' % (textss[i][counter], conf)
                        else:
                            label = '%.2f' % (conf)
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
                    counter-=1

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % Path(out))
        if platform.system() == 'Darwin' and not opt.update:  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # wbf initialize
    wbf = False
    transform = TransformOneModel()

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        img = transform(img)  # 4, c, h, w

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]  # detections with shape: nx6 (x1, y1, x2, y2, conf, cls)

        # Apply NMS or wbf
        if not wbf:
            pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
            t2 = time_synchronized()
        else:


        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        label = f'{names[int(cls)]} {conf:.2f}'
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
    parser.add_argument('--source', type=str, default='data/images', help='source')  # file/folder, 0 for webcam
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='display results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    opt = parser.parse_args()
    print(opt)
    check_requirements()

    with torch.no_grad():
        if opt.update:  # update all models (to fix SourceChangeWarning)
            for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
                detect()
                strip_optimizer(opt.weights)
        else:
            detect()
コード例 #20
0
ファイル: common.py プロジェクト: ba2vwbus13/sim_nank
    def __init__(self, weights='yolov5s.pt', device=None, dnn=False):
        # Usage:
        #   PyTorch:      weights = *.pt
        #   TorchScript:            *.torchscript
        #   CoreML:                 *.mlmodel
        #   TensorFlow:             *_saved_model
        #   TensorFlow:             *.pb
        #   TensorFlow Lite:        *.tflite
        #   ONNX Runtime:           *.onnx
        #   OpenCV DNN:             *.onnx with dnn=True
        #   TensorRT:               *.engine
        from models.experimental import attempt_download, attempt_load  # scoped to avoid circular import

        super().__init__()
        w = str(weights[0] if isinstance(weights, list) else weights)
        suffix = Path(w).suffix.lower()
        suffixes = [
            '.pt', '.torchscript', '.onnx', '.engine', '.tflite', '.pb', '',
            '.mlmodel'
        ]
        check_suffix(w, suffixes)  # check weights have acceptable suffix
        pt, jit, onnx, engine, tflite, pb, saved_model, coreml = (
            suffix == x for x in suffixes)  # backend booleans
        stride, names = 64, [f'class{i}'
                             for i in range(1000)]  # assign defaults
        attempt_download(w)  # download if not local

        if jit:  # TorchScript
            LOGGER.info(f'Loading {w} for TorchScript inference...')
            extra_files = {'config.txt': ''}  # model metadata
            model = torch.jit.load(w, _extra_files=extra_files)
            if extra_files['config.txt']:
                d = json.loads(extra_files['config.txt'])  # extra_files dict
                stride, names = int(d['stride']), d['names']
        elif pt:  # PyTorch
            model = attempt_load(weights, map_location=device)
            stride = int(model.stride.max())  # model stride
            names = model.module.names if hasattr(
                model, 'module') else model.names  # get class names
            self.model = model  # explicitly assign for to(), cpu(), cuda(), half()
        elif coreml:  # CoreML
            LOGGER.info(f'Loading {w} for CoreML inference...')
            import coremltools as ct
            model = ct.models.MLModel(w)
        elif dnn:  # ONNX OpenCV DNN
            LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
            check_requirements(('opencv-python>=4.5.4', ))
            net = cv2.dnn.readNetFromONNX(w)
        elif onnx:  # ONNX Runtime
            LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
            cuda = torch.cuda.is_available()
            check_requirements(
                ('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
            import onnxruntime
            providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'
                         ] if cuda else ['CPUExecutionProvider']
            session = onnxruntime.InferenceSession(w, providers=providers)
        elif engine:  # TensorRT
            LOGGER.info(f'Loading {w} for TensorRT inference...')
            import tensorrt as trt  # https://developer.nvidia.com/nvidia-tensorrt-download
            Binding = namedtuple('Binding',
                                 ('name', 'dtype', 'shape', 'data', 'ptr'))
            logger = trt.Logger(trt.Logger.INFO)
            with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
                model = runtime.deserialize_cuda_engine(f.read())
            bindings = OrderedDict()
            for index in range(model.num_bindings):
                name = model.get_binding_name(index)
                dtype = trt.nptype(model.get_binding_dtype(index))
                shape = tuple(model.get_binding_shape(index))
                data = torch.from_numpy(np.empty(
                    shape, dtype=np.dtype(dtype))).to(device)
                bindings[name] = Binding(name, dtype, shape, data,
                                         int(data.data_ptr()))
            binding_addrs = OrderedDict(
                (n, d.ptr) for n, d in bindings.items())
            context = model.create_execution_context()
            batch_size = bindings['images'].shape[0]
        else:  # TensorFlow model (TFLite, pb, saved_model)
            if pb:  # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
                LOGGER.info(f'Loading {w} for TensorFlow *.pb inference...')
                import tensorflow as tf

                def wrap_frozen_graph(gd, inputs, outputs):
                    x = tf.compat.v1.wrap_function(
                        lambda: tf.compat.v1.import_graph_def(gd, name=""),
                        [])  # wrapped
                    return x.prune(
                        tf.nest.map_structure(x.graph.as_graph_element,
                                              inputs),
                        tf.nest.map_structure(x.graph.as_graph_element,
                                              outputs))

                graph_def = tf.Graph().as_graph_def()
                graph_def.ParseFromString(open(w, 'rb').read())
                frozen_func = wrap_frozen_graph(gd=graph_def,
                                                inputs="x:0",
                                                outputs="Identity:0")
            elif saved_model:
                LOGGER.info(
                    f'Loading {w} for TensorFlow saved_model inference...')
                import tensorflow as tf
                model = tf.keras.models.load_model(w)
            elif tflite:  # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
                if 'edgetpu' in w.lower():
                    LOGGER.info(
                        f'Loading {w} for TensorFlow Lite Edge TPU inference...'
                    )
                    import tflite_runtime.interpreter as tfli
                    delegate = {
                        'Linux':
                        'libedgetpu.so.1',  # install https://coral.ai/software/#edgetpu-runtime
                        'Darwin': 'libedgetpu.1.dylib',
                        'Windows': 'edgetpu.dll'
                    }[platform.system()]
                    interpreter = tfli.Interpreter(
                        model_path=w,
                        experimental_delegates=[tfli.load_delegate(delegate)])
                else:
                    LOGGER.info(
                        f'Loading {w} for TensorFlow Lite inference...')
                    import tensorflow as tf
                    interpreter = tf.lite.Interpreter(
                        model_path=w)  # load TFLite model
                interpreter.allocate_tensors()  # allocate
                input_details = interpreter.get_input_details()  # inputs
                output_details = interpreter.get_output_details()  # outputs
        self.__dict__.update(locals())  # assign all variables to self
コード例 #21
0
def run(
        weights=ROOT / 'yolov5s.pt',  # model.pt path(s)    训练的权重
        imgsz=[640, 640],  # inference size (pixels) 网络输入图片大小
        conf_thres=0.25,  # confidence threshold 置信度阈值
        iou_thres=0.45,  # NMS IOU threshold nms的iou阈值
        max_det=1000,  # maximum detections per image 分类数
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu 设备
        view_img=True,  # show results 是否展示预测之后的图片/视频
        classes=None,  # filter by class: --class 0, or --class 0 2 3 设置只保留某一部分类别
        agnostic_nms=False,  # class-agnostic NMS 进行nms是否也去除不同类别之间的框
        augment=False,  # augmented inference 图像增强
        visualize=False,  # visualize features 可视化
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
):

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    w = weights[0] if isinstance(weights, list) else weights
    classify, suffix, suffixes = False, Path(w).suffix.lower(), [
        '.pt', '.onnx', '.tflite', '.pb', ''
    ]
    check_suffix(w, suffixes)  # check weights have acceptable suffix
    pt, onnx, tflite, pb, saved_model = (suffix == x
                                         for x in suffixes)  # backend booleans
    stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults
    if pt:
        model = attempt_load(
            weights,
            map_location=device)  # load FP32 model 加载float32模型,确保图片分辨率能整除32
        stride = int(model.stride.max())  # model stride
        names = model.module.names if hasattr(
            model, 'module') else model.names  # get class names
        #设置Float16
        if half:
            model.half()  # to FP16
        # 设置2次分类
        if classify:  # second-stage classifier
            modelc = load_classifier(name='resnet50', n=2)  # initialize
            modelc.load_state_dict(
                torch.load('resnet50.pt',
                           map_location=device)['model']).to(device).eval()
    else:  # TensorFlow models
        check_requirements(('tensorflow>=2.4.1', ))
        import tensorflow as tf
        if pb:  # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt

            def wrap_frozen_graph(gd, inputs, outputs):
                x = tf.compat.v1.wrap_function(
                    lambda: tf.compat.v1.import_graph_def(gd, name=""),
                    [])  # wrapped import
                return x.prune(
                    tf.nest.map_structure(x.graph.as_graph_element, inputs),
                    tf.nest.map_structure(x.graph.as_graph_element, outputs))

            graph_def = tf.Graph().as_graph_def()
            graph_def.ParseFromString(open(w, 'rb').read())
            frozen_func = wrap_frozen_graph(gd=graph_def,
                                            inputs="x:0",
                                            outputs="Identity:0")
        elif saved_model:
            model = tf.keras.models.load_model(w)
        elif tflite:
            interpreter = tf.lite.Interpreter(
                model_path=w)  # load TFLite model
            interpreter.allocate_tensors()  # allocate
            input_details = interpreter.get_input_details()  # inputs
            output_details = interpreter.get_output_details()  # outputs
            int8 = input_details[0][
                'dtype'] == np.uint8  # is TFLite quantized uint8 model
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    # 图片或视频
    tmp = False
    tmp2 = False
    mon = {'top': 0, 'left': 0, 'width': 960, 'height': 960}

    while True:
        im = np.array(mss().grab(mon))
        screen = cv2.cvtColor(im, cv2.COLOR_BGRA2BGR)
        dataset = LoadImages(screen, img_size=imgsz, stride=stride, auto=pt)
        dt, seen = [0.0, 0.0, 0.0], 0
        '''
        path 图片/视频路径
        img 进行resize+pad之后的图片,如(3,640,512) 格式(c,h,w)
        img0s 原size图片,如(1080,810,3)
        cap 当读取图片时为None,读取视频时为视频源
        '''

        for img, im0s, vid_cap in dataset:
            t1 = time_sync()
            if onnx:
                img = img.astype('float32')
            else:
                img = torch.from_numpy(img).to(device)
                # print(img)
                # 图片也设置为Float16或者32
                img = img.half() if half else img.float()  # uint8 to fp16/32
            img = img / 255.0  # 0 - 255 to 0.0 - 1.0
            # 没有batch_size时,在最前面添加一个轴
            if len(img.shape) == 3:
                img = img[None]  # expand for batch dim
            t2 = time_sync()
            dt[0] += t2 - t1

            # Inference
            if pt:
                '''
                前向传播,返回pred的shape是(1,num_boxes,5+num_class)
                h,w为传入网络图片的高和宽,注意dataset在检测时使用了矩形推理,所以h不一定等于w
                num_boxes = (h/32*w/32+h/16*w/16+h/8*w/8)*3
                例如:图片大小720,1280 -> 15120个boxes = (20*12 + 40*24 + 80*48 = 5040)*3
                pred[...,0:4]为预测框坐标;预测框坐标为xywh
                pred[...,4]为objectness置信度
                pred[...,5:-1]为分类结果
                '''
                pred = model(img, augment=augment, visualize=visualize)[0]

            else:  # tensorflow model (tflite, pb, saved_model)
                imn = img.permute(0, 2, 3, 1).cpu().numpy()  # image in numpy
                if pb:
                    pred = frozen_func(x=tf.constant(imn)).numpy()
                elif saved_model:
                    pred = model(imn, training=False).numpy()
                elif tflite:
                    if int8:
                        scale, zero_point = input_details[0]['quantization']
                        imn = (imn / scale + zero_point).astype(
                            np.uint8)  # de-scale
                    interpreter.set_tensor(input_details[0]['index'], imn)
                    interpreter.invoke()
                    pred = interpreter.get_tensor(output_details[0]['index'])
                    if int8:
                        scale, zero_point = output_details[0]['quantization']
                        pred = (pred.astype(np.float32) -
                                zero_point) * scale  # re-scale
                pred[..., 0] *= imgsz[1]  # x
                pred[..., 1] *= imgsz[0]  # y
                pred[..., 2] *= imgsz[1]  # w
                pred[..., 3] *= imgsz[0]  # h
                pred = torch.tensor(pred)
            t3 = time_sync()
            dt[1] += t3 - t2

            # NMS
            '''
            pred:前向传播的输出
            conf_thres:置信度阈值
            iou_thres:iou阈值
            classes:是否只保留特定的类别
            agnostic_nmsL进行nms是否也去除不同类别之间的框
            经过nms后预测框格式,xywh->xyxy(左上角右上角)
            pred是一个列表list[torch.tensor],长度为nms后目标框个数
            每一个torch.tensor的shape为(num_boxes,6),内容为box(4个值)+cunf+cls
            '''
            pred = non_max_suppression(pred,
                                       conf_thres,
                                       iou_thres,
                                       classes,
                                       agnostic_nms,
                                       max_det=max_det)
            dt[2] += time_sync() - t3

            # Second-stage classifier (optional)
            # 添加二级分类,默认false
            # if classify:
            #     pred = apply_classifier(pred, modelc, img, im0s)

            # Process predictions
            # 对每一张图片处理
            for i, det in enumerate(pred):  # per image
                seen += 1
                s, im0 = '', im0s.copy()
                # 设置打印信息(图片宽高),s如'640*512'
                s += '%gx%g ' % img.shape[2:]  # print string
                annotator = Annotator(im0,
                                      line_width=line_thickness,
                                      example=str(names))
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    # 调整预测框坐标,基于resize+pad的图片坐标->基于原size图片坐标
                    # 此时坐标格式为xyxy
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                              im0.shape).round()

                    # Print results
                    # 打印检测到的类别数量
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                    # Write results
                    # 保存预测结果
                    for *xyxy, conf, cls in reversed(det):
                        if view_img:  # Add bbox to image
                            c = int(cls)  # integer class
                            label = None if hide_labels else (
                                names[c]
                                if hide_conf else f'{names[c]} {conf:.2f}')
                            annotator.box_label(xyxy,
                                                label,
                                                color=colors(c, True))
                # Stream results
                im0 = annotator.result()
                cv2.imshow('a crop of the screen', im0)
                cv2.moveWindow('a crop of the screen', 960, 0)
                if cv2.waitKey(1) & 0xff == ord('q'):
                    tmp = True
                    break
            if tmp:
                tmp2 = True
                break
        if tmp2:
            break
コード例 #22
0
def detect():
    source, weights, view_img, save_txt, imgsz, video_output, map = opt.source, opt.weights, \
                                                  opt.view_img, opt.save_txt, opt.img_size, opt.video_output, opt.map
    '''
    ####################CAMERA & OUTPUT#######################
    '''
    cap = cv2.VideoCapture(source)
    fps = cap.get(cv2.CAP_PROP_FPS)
    w, h = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(
        cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    '''
    #######################DIRECTORIES########################
    '''
    if video_output:
        save_dir = opt.project
        source_name = source.split("/")[-1]
        os.makedirs(save_dir, exist_ok=True)
        result_video_path = os.path.join(save_dir, source_name)
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(result_video_path, fourcc, fps,
                              (int(cap.get(3)), int(cap.get(4))))
    '''
    ##################INITIALIZE THE MODEL#####################
    '''
    # Initialize ===============================================
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA
    # Load model ===============================================
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    cudnn.benchmark = True
    names = model.module.names if hasattr(model, 'module') else model.names
    '''
    ####################ANALYSE VIDEO FRAME BY FRAME##############################
    '''
    while True:
        start_time = time.time()
        ok, frame = cap.read()

        image = ip.letterbox(frame, new_shape=imgsz)
        image = ip.convert_image(image, device, half)
        pred = model(image, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)

        # detections per image
        for i, det in enumerate(pred):

            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(image.shape[2:], det[:, :4],
                                          frame.shape).round()

            for *xyxy, conf, cls in reversed(det):

                class_name = cls.item()
                class_name = names[int(class_name)]
                confidence_score = conf.item()
                x_min = int(xyxy[0].tolist())
                y_min = int(xyxy[1].tolist())
                x_max = int(xyxy[2].tolist())
                y_max = int(xyxy[3].tolist())
                box = x_min, x_max, y_min, y_max
                area = tracker.det_box_area(box)

                kernel_width = (w // 40) | 1
                kernel_height = (h // 40) | 1

                area = frame[y_min:y_max, x_min:x_max]
                blured_area = cv2.GaussianBlur(area,
                                               (kernel_width, kernel_height),
                                               0)

                frame[y_min:y_max, x_min:x_max] = blured_area
        '''
        #######################################################
        '''
        end_time = time.time()
        inference_time = end_time - start_time
        # print("TIMESTAMP", TIMESTAMP)
        print("Inference Time: ", inference_time)
        if video_output:
            out.write(frame)
        cv2.imshow('object detection', cv2.resize(frame, (720, 400)))
        # Update Frame and Keypoints
        if cv2.waitKey(1) & 0xFF == ord('q'):
            cv2.destroyAllWindows()
            break
コード例 #23
0
ファイル: detect.py プロジェクト: phandaiduonghcb/CS114.L21
def detect(weights='yolov5s.pt',  # model.pt path(s)
           source='data/images',  # file/dir/URL/glob, 0 for webcam
           imgsz=640,  # inference size (pixels)
           conf_thres=0.25,  # confidence threshold
           iou_thres=0.45,  # NMS IOU threshold
           max_det=1000,  # maximum detections per image
           device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
           view_img=False,  # show results
           save_txt=False,  # save results to *.txt
           save_conf=False,  # save confidences in --save-txt labels
           save_crop=False,  # save cropped prediction boxes
           nosave=False,  # do not save images/videos
           classes=None,  # filter by class: --class 0, or --class 0 2 3
           agnostic_nms=False,  # class-agnostic NMS
           augment=False,  # augmented inference
           update=False,  # update all models
           project='runs/detect',  # save results to project/name
           name='exp',  # save results to project/name
           exist_ok=False,  # existing project/name ok, do not increment
           line_thickness=3,  # bounding box thickness (pixels)
           hide_labels=False,  # hide labels
           hide_conf=False,  # hide confidences
           half=False,  # use FP16 half-precision inference
           ):
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    f_money = open('Classes.csv','r')
    lines = f_money.read().split('\n')
    if lines[-1] == '':
        lines = lines[:-1]
    for i in range(len(lines)):
        lines[i] = lines[i].split(',')
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check image size
    names = model.module.names if hasattr(model, 'module') else model.names  # get class names
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                count_list = []
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
                    count_list.append((names[int(c)],int(n)))
                    #names[int(c)] là tên class
                    #int(n) là số class
                    

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                        plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=line_thickness)
                        plot_current_money(count_list,im0,lines)
                        if save_crop:
                            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)

    print(f'Done. ({time.time() - t0:.3f}s)')
コード例 #24
0
import cv2
from models.experimental import attempt_load
from utils.general import detect, cv2_show
from utils.torch_utils import select_device
import numpy as np
from timeit import default_timer as timer

device = select_device("")
half = device.type != "cpu"
rescale_size = 1280
conf = 0.4

detection_weights = r"weights/yolov5s.pt"
video_path = r"examples/la_highway_driving1.mp4"

yolo5 = attempt_load(detection_weights, map_location=device)
CLASSES = yolo5.module.names if hasattr(yolo5, 'module') else yolo5.names
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

yolo5.to(device)
if half:
    yolo5.half()

cap = cv2.VideoCapture(video_path)
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
size = (frame_width, frame_height)

fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(f"results/la_highway_demo0_{rescale_size}p_conf{conf}.mp4", fourcc, 25.0, size)
コード例 #25
0
                        type=str,
                        default='',
                        help='paht of image to predict')
    parser.add_argument('--weight',
                        type=str,
                        default='',
                        help='trained_model_weight')
    parser.add_argument('--threshold',
                        type=float,
                        default=0.7,
                        help='confidence threshold')
    #parser.add_argument('--show_output', type=bool, default=False, help='confidence threshold')#目前還無法在colab上顯示,所以先不開放
    opt = parser.parse_args()
    #print(opt)
    weights, imgsz = \
    opt.weight, 576
    device = select_device('')
    half = device.type != 'cpu'
    model = attempt_load(weights, map_location=device)
    model.to(device).eval()
    if half:
        model.half()  # to FP16
    outcome = predict(opt.img_path, opt.threshold)
    if outcome:
        print("This image is positive image")
    else:
        print("This image is negative image")
#     if opt.show_output:
#         img = visualization(opt.img_path)
#         cv2_imshow(img)
コード例 #26
0
ファイル: export.py プロジェクト: GustavoVictor/yolov5
def run(data=ROOT / 'data/coco128.yaml',  # 'dataset.yaml path'
        weights=ROOT / 'yolov5s.pt',  # weights path
        imgsz=(640, 640),  # image (height, width)
        batch_size=1,  # batch size
        device='cpu',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        include=('torchscript', 'onnx'),  # include formats
        half=False,  # FP16 half-precision export
        inplace=False,  # set YOLOv5 Detect() inplace=True
        train=False,  # model.train() mode
        optimize=False,  # TorchScript: optimize for mobile
        int8=False,  # CoreML/TF INT8 quantization
        dynamic=False,  # ONNX/TF: dynamic axes
        simplify=False,  # ONNX: simplify model
        opset=12,  # ONNX: opset version
        verbose=False,  # TensorRT: verbose log
        workspace=4,  # TensorRT: workspace size (GB)
        nms=False,  # TF: add NMS to model
        agnostic_nms=False,  # TF: add agnostic NMS to model
        topk_per_class=100,  # TF.js NMS: topk per class to keep
        topk_all=100,  # TF.js NMS: topk for all classes to keep
        iou_thres=0.45,  # TF.js NMS: IoU threshold
        conf_thres=0.25  # TF.js NMS: confidence threshold
        ):
    t = time.time()
    include = [x.lower() for x in include]
    tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'))  # TensorFlow exports
    file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)

    # Checks
    imgsz *= 2 if len(imgsz) == 1 else 1  # expand
    opset = 12 if ('openvino' in include) else opset  # OpenVINO requires opset <= 12

    # Load PyTorch model
    device = select_device(device)
    assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
    model = attempt_load(weights, map_location=device, inplace=True, fuse=True)  # load FP32 model
    nc, names = model.nc, model.names  # number of classes, class names

    # Input
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz = [check_img_size(x, gs) for x in imgsz]  # verify img_size are gs-multiples
    im = torch.zeros(batch_size, 3, *imgsz).to(device)  # image size(1,3,320,192) BCHW iDetection

    # Update model
    if half:
        im, model = im.half(), model.half()  # to FP16
    model.train() if train else model.eval()  # training mode = no Detect() layer grid construction
    for k, m in model.named_modules():
        if isinstance(m, Conv):  # assign export-friendly activations
            if isinstance(m.act, nn.SiLU):
                m.act = SiLU()
        elif isinstance(m, Detect):
            m.inplace = inplace
            m.onnx_dynamic = dynamic
            # m.forward = m.forward_export  # assign forward (optional)

    for _ in range(2):
        y = model(im)  # dry runs
    LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)")

    # Exports
    if 'torchscript' in include:
        export_torchscript(model, im, file, optimize)
    if 'engine' in include:  # TensorRT required before ONNX
        export_engine(model, im, file, train, half, simplify, workspace, verbose)
    if ('onnx' in include) or ('openvino' in include):  # OpenVINO requires ONNX
        export_onnx(model, im, file, opset, train, dynamic, simplify)
    if 'openvino' in include:
        export_openvino(model, im, file)
    if 'coreml' in include:
        export_coreml(model, im, file)

    # TensorFlow Exports
    if any(tf_exports):
        pb, tflite, edgetpu, tfjs = tf_exports[1:]
        if int8 or edgetpu:  # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
            check_requirements(('flatbuffers==1.12',))  # required before `import tensorflow`
        assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
        model = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs,
                                   agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class, topk_all=topk_all,
                                   conf_thres=conf_thres, iou_thres=iou_thres)  # keras model
        if pb or tfjs:  # pb prerequisite to tfjs
            export_pb(model, im, file)
        if tflite or edgetpu:
            export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100)
        if edgetpu:
            export_edgetpu(model, im, file)
        if tfjs:
            export_tfjs(model, im, file)

    # Finish
    LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
                f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
                f'\nVisualize with https://netron.app')
コード例 #27
0
def detect(save_img=False):
    print_div('INTIL')
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size

    # Initialize
    print_div('GET DEVICE')
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    print_div('LOAD MODEL')
    model = attempt_load(weights, map_location=device)
    # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())
    # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    print_div('LOAD MODEL_CLASSIFIER')
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Get names and colors
    print_div('SET LABEL COLOR')
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # Run inference
    ###############################################################################
    print_div("RUN INFERENCE")
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once
    video_path = source
    cap = cv2.VideoCapture(video_path)

    print_div('Start Play VIDEO')
    while cap.isOpened():
        ret, frame = cap.read()
        t0 = time.time()

        if not ret:
            print_div('No Frame')
            break

        fps_t1 = time.time()
        img, img0 = img_preprocess(frame)  # img: Resize, img0:Orginal
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0

        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS : 取得每項預測的數值
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier : 取得該數值的LAbel
        if classify:
            pred = apply_classifier(pred, modelc, img, img0)

        # Draw Box
        for i, det in enumerate(pred):
            s = '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(img0.shape)[[1, 0, 1,
                                           0]]  # normalization gain whwh

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          img0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    label = '%s %.2f' % (names[int(cls)], conf)
                    plot_one_box(xyxy,
                                 img0,
                                 label=label,
                                 color=colors[int(cls)],
                                 line_thickness=3)

        # Print Results(inference + NMS)
        print_div('%sDone. (%.3fs)' % (s, t2 - t1))

        # Draw Image
        x, y, w, h = (img0.shape[1] // 4), 25, (img0.shape[1] // 2), 30
        cv2.rectangle(img0, (x, 10), (x + w, y + h), (0, 0, 0), -1)

        rescale = 0.5
        re_img0 = (int(img0.shape[1] * rescale), int(img0.shape[0] * rescale))

        cv2.putText(
            img0, '{} | inference: {:.4f}s | fps: {:.4f}'.format(
                opt.weights[0], t2 - t1, 1 / (time.time() - t0)),
            (x + 20, y + 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
        cv2.imshow('Stream_Detected', cv2.resize(img0, re_img0))

        key = cv2.waitKey(1)
        if key == ord('q'): break

    # After break
    cap.release()
    cv2.destroyAllWindows()
コード例 #28
0
def detect(opt, save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))
    output = ""
    # Directories
    save_dir = Path(
        increment_path(Path(opt.project) / opt.name,
                       exist_ok=opt.exist_ok))  # increment run
    if (save_img or view_img or save_txt):
        (save_dir / 'labels' if save_txt else save_dir).mkdir(
            parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    if half:
        model.half()  # to FP16

    # print(model)

    for name, param in model.named_parameters():

        # for layer in model.model:
        if 'conv.weight' in name:  # conv.weight
            weights = param
            print(name)  # , filters.shape)
            # print(weights)

            # normalize filter values between  0 and 1 for visualization
            f_min, f_max = weights.min(), weights.max()
            filters = (weights - f_min) / (f_max - f_min)
            print(filters.shape)
            filter_cnt = 1

            # plotting all the filters
            for i in range(filters.shape[2]):
                # get the filters
                #filt = filters[i, :, :, :]
                # plotting each of the channel, color image RGB channels
                for j in range(filters.shape[3]):
                    ax = plt.subplot(filters.shape[2], filters.shape[3],
                                     filter_cnt)
                    ax.set_xticks([])
                    ax.set_yticks([])
                    ax.axis('off')
                    plt.imshow(filters[:, :, i, j], cmap='gray')
                    filter_cnt += 1
                    #print(filters[j, :, :])
                    # return

            # plt.show()
            plt.savefig('visualization/' + name + '.png', bbox_inches='tight')
            # return

    return
コード例 #29
0
def detect(save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.startswith(
        'rtsp') or source.startswith('http') or source.endswith('.txt')

    # Initialize
    set_logging()
    device = select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        niche = True  # Pass a Niche flag to handle Columbrium folders
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            txt_path = str(Path(out) / Path(p).stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * 5 + '\n') %
                                    (cls, *xywh))  # label format

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % Path(out))
        if platform.system() == 'Darwin' and not opt.update:  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
コード例 #30
0
ファイル: detect.py プロジェクト: Floppyd1sk/yolov5-master
def detect(save_img):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.startswith(('rtsp://', 'rtmp://', 'http://')) or source.endswith('.txt')

    # Initialize
    set_logging()
    cars = MainController.getLatestVehicleAmount("Car")
    motors = MainController.getLatestVehicleAmount("Motorcycle")
    trucks = MainController.getLatestVehicleAmount("Truck")

    totalCarAmount = cars + motors + trucks
    totalCars = cars
    totalTrucks = trucks
    totalMotors = motors
    displayTotalAmount = totalCarAmount
    displayCarAmount = totalCars
    displayTruckAmount = totalTrucks
    displayMotorAmount = totalMotors
    oldCombinedAmount = 0
    combinedAmount = 0
    tempAmount = 0

    # Video = False, Webcam = True
    control = False

    elapsed = 0
    device = select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    start = time.time()
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)

    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    # colors = [[np.randint(0, 255) for _ in range(3)] for _ in range(len(names))]

    # Run inference

    t0 = time.time()
    ct = CentroidTracker()
    listDet = ['car', 'motorcycle', 'truck']

    totalDownCar = 0
    totalDownMotor = 0
    totalDownTruck = 0

    totalUpCar = 0
    totalUpMotor = 0
    totalUpTruck = 0

    trackableObjects = {}

    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        elapsed = time.time() - start
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        rects = []
        labelObj = []
        arrCentroid = []
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
                # cv2.resize(im0, (2560, 1440))
            else:
                p, s, im0 = path, '', im0s
                # cv2.resize(im0, (2560, 1440))

            height, width, channels = im0.shape
            cv2.line(im0, (0, int(height / 1.5)), (int(width), int(height / 1.5)), (255, 0, 0), thickness=3)

            if not control:
                cv2.putText(im0, 'Totale koeretoejer: ' + str(displayTotalAmount), (int(width * 0.02),
                                                                               int(height * 0.5)),
                            cv2.FONT_HERSHEY_SIMPLEX, 1, (50, 255, 255), 2)
                cv2.putText(im0, 'Bil: ' + str(displayCarAmount), (int(width * 0.02), int(height * 0.55)),
                            cv2.FONT_HERSHEY_SIMPLEX, .75, (50, 255, 255), 2)
                cv2.putText(im0, 'Motorcykel: ' + str(displayMotorAmount), (int(width * 0.02), int(height * 0.60)),
                            cv2.FONT_HERSHEY_SIMPLEX, .75, (50, 255, 255), 2)
                cv2.putText(im0, 'Lastbil: ' + str(displayTruckAmount), (int(width * 0.02), int(height * 0.65)),
                            cv2.FONT_HERSHEY_SIMPLEX, .75, (50, 255, 255), 2)
            else:
                cv2.putText(im0, 'Totale koeretoejer: ' + str(displayTotalAmount), (int(width * 0.02),
                                                                               int(height * 0.5)),
                            cv2.FONT_HERSHEY_SIMPLEX, 3, (50, 255, 255), 3)


            # cv2.line(im0, (int(width / 1.8), int(height / 1.5)), (int(width), int(height / 1.5)), (255, 127, 0), thickness=3)

            save_path = str(Path(out) / Path(p).name)
            txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    label = '%s %.2f' % (names[int(cls)], conf)
                    # print(xyxy)
                    x = xyxy
                    tl = None or round(0.002 * (im0.shape[0] + im0.shape[1]) / 2) + 1  # line/font thickness
                    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
                    label1 = label.split(' ')
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label format

                    if label1[0] in listDet:
                        cv2.rectangle(im0, c1, c2, (0, 0, 0), thickness=tl, lineType=cv2.LINE_AA)
                        box = (int(x[0]), int(x[1]), int(x[2]), int(x[3]))
                        rects.append(box)
                        labelObj.append(label1[0])
                        tf = max(tl - 1, 1)
                        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
                        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
                        cv2.rectangle(im0, c1, c2, (0, 100, 0), -1, cv2.LINE_AA)
                        cv2.putText(im0, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf,
                                    lineType=cv2.LINE_AA)

                detCentroid = generateCentroid(rects)
                objects = ct.update(rects)

                for (objectID, centroid) in objects.items():
                    arrCentroid.append(centroid[1])
                for (objectID, centroid) in objects.items():
                    # print(idxDict)
                    to = trackableObjects.get(objectID, None)
                    if to is None:
                        to = TrackableObject(objectID, centroid)
                    else:
                        y = [c[1] for c in to.centroids]
                        direction = centroid[1] - np.mean(y)
                        to.centroids.append(centroid)
                        if not to.counted:  # arah up

                            if direction < 0 and centroid[1] < height / 1.5 and centroid[
                                1] > height / 1.7:  ##up truble when at distant car counted twice because bbox reappear
                                idx = detCentroid.tolist().index(centroid.tolist())
                                if (labelObj[idx] == 'car'):
                                    totalUpCar += 1
                                    to.counted = True
                                elif (labelObj[idx] == 'motorcycle'):
                                    totalUpMotor += 1
                                    to.counted = True
                                elif (labelObj[idx] == 'truck'):
                                    totalUpTruck += 1
                                    to.counted = True

                            elif direction > 0 and centroid[1] > height / 1.5:  # arah down
                                idx = detCentroid.tolist().index(centroid.tolist())
                                if (labelObj[idx] == 'car'):
                                    totalDownCar += 1
                                    to.counted = True
                                elif (labelObj[idx] == 'motorcycle'):
                                    totalDownMotor += 1
                                    to.counted = True
                                elif (labelObj[idx] == 'truck'):
                                    totalDownTruck += 1
                                    to.counted = True

                    trackableObjects[objectID] = to

                oldCarAmount = totalCarAmount
                oldTotalCars = totalCars
                oldTotalTrucks = totalTrucks
                oldTotalMotors = totalMotors

                combinedAmount = totalDownCar + totalDownTruck + totalDownMotor + \
                                 totalUpCar + totalUpMotor + totalUpTruck

                totalCars = totalDownCar + totalUpCar
                totalTrucks = totalDownTruck + totalUpTruck
                totalMotors = totalDownMotor + totalUpMotor

                if not oldCombinedAmount == combinedAmount:
                    tempAmount = totalCarAmount + combinedAmount
                    oldCombinedAmount = combinedAmount

                if oldCarAmount < tempAmount:
                    totalCarAmount = tempAmount

                if not oldCarAmount == totalCarAmount:
                    displayTotalAmount += 1

                if not oldTotalCars == totalCars:
                    dbInsOrUpdVehicle("Car")
                    displayCarAmount += 1

                if not oldTotalTrucks == totalTrucks:
                    dbInsOrUpdVehicle("Truck")
                    displayTruckAmount += 1

                if not oldTotalMotors == totalMotors:
                    dbInsOrUpdVehicle("Motorcycle")
                    displayMotorAmount += 1


                if not control:
                    cv2.putText(im0, 'Frakoerende: ',
                                (int(width * 0.6), int(height * 0.10)),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (50, 255, 255), 2)
                    cv2.putText(im0, 'Bil: ' + str(totalUpCar), (int(width * 0.6), int(height * 0.15)),
                                cv2.FONT_HERSHEY_SIMPLEX, .75, (50, 255, 255), 2)
                    cv2.putText(im0, 'Motorcykel: ' + str(totalUpMotor), (int(width * 0.6), int(height * 0.2)),
                                cv2.FONT_HERSHEY_SIMPLEX, .75, (50, 255, 255), 2)
                    cv2.putText(im0, 'Lastbil: ' + str(totalUpTruck), (int(width * 0.6), int(height * 0.25)),
                                cv2.FONT_HERSHEY_SIMPLEX, .75, (50, 255, 255), 2)

                    cv2.putText(im0, 'Modkoerende: ',
                                (int(width * 0.02), int(height * 0.10)),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (50, 255, 255), 2)
                    cv2.putText(im0, 'Bil: ' + str(totalDownCar), (int(width * 0.02), int(height * 0.15)),
                                cv2.FONT_HERSHEY_SIMPLEX, .75, (50, 255, 255), 2)
                    cv2.putText(im0, 'Motorcykel: ' + str(totalDownMotor), (int(width * 0.02), int(height * 0.2)),
                                cv2.FONT_HERSHEY_SIMPLEX, .75, (50, 255, 255), 2)
                    cv2.putText(im0, 'Lastbil: ' + str(totalDownTruck), (int(width * 0.02), int(height * 0.25)),
                                cv2.FONT_HERSHEY_SIMPLEX, .75, (50, 255, 255), 2)
                else:
                    cv2.putText(im0, 'Frakoerende: ',
                                (int(width * 0.6), int(height * 0.10)),
                                cv2.FONT_HERSHEY_SIMPLEX, 4, (50, 255, 255), 3)
                    cv2.putText(im0, 'Bil: ' + str(totalUpCar), (int(width * 0.6), int(height * 0.15)),
                                cv2.FONT_HERSHEY_SIMPLEX, 3, (50, 255, 255), 3)
                    cv2.putText(im0, 'Motorcykel: ' + str(totalUpMotor), (int(width * 0.6), int(height * 0.2)),
                                cv2.FONT_HERSHEY_SIMPLEX, 3, (50, 255, 255), 3)
                    cv2.putText(im0, 'Lastbil: ' + str(totalUpTruck), (int(width * 0.6), int(height * 0.25)),
                                cv2.FONT_HERSHEY_SIMPLEX, 3, (50, 255, 255), 3)

                    cv2.putText(im0, 'Modkoerende: ',
                                (int(width * 0.02), int(height * 0.10)),
                                cv2.FONT_HERSHEY_SIMPLEX, 4, (50, 255, 255), 3)
                    cv2.putText(im0, 'Bil: ' + str(totalDownCar), (int(width * 0.02), int(height * 0.15)),
                                cv2.FONT_HERSHEY_SIMPLEX, 3, (50, 255, 255), 3)
                    cv2.putText(im0, 'Motorcykel: ' + str(totalDownMotor), (int(width * 0.02), int(height * 0.2)),
                                cv2.FONT_HERSHEY_SIMPLEX, 3, (50, 255, 255), 3)
                    cv2.putText(im0, 'Lastbil: ' + str(totalDownTruck), (int(width * 0.02), int(height * 0.25)),
                                cv2.FONT_HERSHEY_SIMPLEX, 3, (50, 255, 255), 3)


            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.namedWindow('Main', cv2.WINDOW_NORMAL)
                cv2.resizeWindow('Main', 1920, 1080)
                cv2.imshow("Main", im0)

                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)

                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % Path(out))

    print('Done. (%.3fs)' % (time.time() - t0))