コード例 #1
0
def visualize():
    adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask = load_data(
        args.dataset)
    model = GCN(features.shape[1], args.hidden_dim, y_train.shape[1], 0)
    gcn_layer1 = model.gcn_layer1
    gcn_layer1.register_forward_hook(hook_fn_forward)
    if args.checkpoint:
        model.load_state_dict(torch.load(args.checkpoint))
    model.eval()
    model(adj, features)

    x_all = gcn_layer1_output[0]
    y_train = np.argmax(y_train[train_mask, :].numpy(), axis=1)
    y_val = np.argmax(y_val[val_mask, :].numpy(), axis=1)
    y_test = np.argmax(y_test[test_mask, :].numpy(), axis=1)
    tsne_vis(x_all[train_mask], y_train, classnames[args.dataset], 'train_set',
             args.dataset)
    tsne_vis(x_all[val_mask], y_val, classnames[args.dataset], 'val_set',
             args.dataset)
    tsne_vis(x_all[test_mask], y_test, classnames[args.dataset], 'test_set',
             args.dataset)
コード例 #2
0
ファイル: main.py プロジェクト: lipengfeizju/gcn-flc
def main():
    global args
    args = parser.parse_args()
    cfg = load_config(args.config)

    device = torch.device("cuda:0" if not args.no_cuda else "cpu")

    if args.mode == 'train':

        exp_name = 'gcn' + '_old_wc1_small_bs_4_lr_1e-2_test'

        tb_writer = SummaryWriter(tb_log_dir + exp_name)

        train_loader, val_loader = build_data_loader(args.mode)

        model = GCN(cfg).to(device)

        optimizer = optim.Adam(model.parameters(),
                               args.learning_rate, (0.9, 0.999),
                               eps=1e-08)
        #optimizer = optim.SGD(model.parameters(), args.learning_rate, momentum=0.9)

        scheduler = optim.lr_scheduler.StepLR(optimizer,
                                              step_size=50,
                                              gamma=0.5)

        total_tb_it = 0
        best_val_loss = 1000

        for epoch in range(args.epochs):
            scheduler.step(epoch)

            total_tb_it = train(cfg, model, train_loader, device, optimizer,
                                epoch, tb_writer, total_tb_it)
            val_loss = validate(cfg, model, val_loader, device, tb_writer,
                                total_tb_it)

            if val_loss <= best_val_loss:
                best_val_loss = val_loss
                name = checkpoint_dir + exp_name + '_model.pkl'
                state = {
                    'epoch': epoch,
                    'model_state': model.state_dict(),
                    'optimizer_state': optimizer.state_dict()
                }
                torch.save(state, name)

        tb_writer.close()

    elif args.mode == 'predict':

        print('Load data...')
        test_loader = build_data_loader(args.mode)

        print('Start predicting...')

        model = GCN(cfg).to(device)

        model.load_state_dict(torch.load(args.resume_file)['model_state'])

        #summary(model, [(200, 1), (200, 200)])

        test(cfg, model, test_loader, device)

    else:
        raise Exception("Unrecognized mode.")
コード例 #3
0
ファイル: inference.py プロジェクト: flixpar/VisDa
    save_path = os.path.join(args.paths["project_path"],
                             "saves{}".format(args.eval["version"]),
                             "{}-{}.pth".format(args.model, trained_epochs))

    dataset = TestDataset()

    if args.model == "GCN":
        model = GCN(cityscapes.num_classes, args.img_size, k=args.K).cuda()
    elif args.model == "GCN_DENSENET":
        model = GCN_DENSENET(cityscapes.num_classes, args.img_size,
                             k=args.K).cuda()
    elif args.model == "GCN_DECONV":
        model = GCN_DECONV(cityscapes.num_classes, args.img_size,
                           k=args.K).cuda()
    elif args.model == "GCN_PSP":
        model = GCN_PSP(cityscapes.num_classes, args.img_size, k=args.K).cuda()
    elif args.model == "GCN_COMB":
        model = GCN_COMBINED(cityscapes.num_classes, args.img_size).cuda()
    elif args.model == "GCN_RESNEXT":
        model = GCN_RESNEXT(dataset.num_classes, k=self.args.K).cuda()
    elif args.model == "UNet":
        model = UNet(cityscapes.num_classes).cuda()
    elif args.model == "PSPNet":
        model = PSPNet(cityscapes.num_classes, args.img_size).cuda()
    else:
        raise ValueError("Invalid model arg.")
    model.load_state_dict(torch.load(save_path))

    evaluator = Evaluator(dataset)
    evaluator.eval(model)
コード例 #4
0
                      metrics=["miou"],
                      crf=False)

# setup model:
if args.model == "GCN":
    model = GCN(dataset.num_classes, dataset.img_size, k=args.K).cuda()
elif args.model == "UNet":
    model = UNet(dataset.num_classes).cuda()
else:
    raise ValueError("Invalid model arg.")
model.train()

if args.resume:
    assert os.path.exists(os.path.join(paths["project_path"], "saves"))
    resume_path = save_path.format(args.resume_epoch)
    model.load_state_dict(torch.load(resume_path))
    start_epoch = args.resume_epoch
else:
    start_epoch = 0

# setup loss and optimizer

if args.optimizer == "SGD":
    optimizer = optim.SGD(model.parameters(),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay,
                          nesterov=True)
elif args.optimizer == "Adam":
    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,