コード例 #1
0
ファイル: ibm_shared_cross_val.py プロジェクト: siddk/py-amdp
def run_cross_val(data, out):
    with open(data, 'r') as f:
        pc, commands = pickle.load(f)
    
    all_commands = commands['L0'] + commands['L1']
    
    l0_len, l1_len, l2_len = len(pc['L0']), len(pc['L1']), len(pc['L2'])
    l0_range = range(0, l0_len, l0_len / FOLDS)
    l1_range = range(0, l1_len, l1_len / FOLDS)
    l2_range = range(0, l2_len, l2_len / FOLDS)
    assert(len(l0_range) == len(l1_range) == len(l2_range) == 11)
    
    reward_selection = []
    for i in range(FOLDS):
        random.seed(21)
        val = {'L0': pc['L0'][l0_range[i]:l0_range[i + 1]],
               'L1': pc['L1'][l1_range[i]:l1_range[i + 1]],
               'L2': pc['L2'][l2_range[i]:l2_range[i + 1]]}

        l0_train = pc['L0'][:l0_range[i]] + pc['L0'][l0_range[i + 1]:]
        l1_train = pc['L1'][:l1_range[i]] + pc['L1'][l1_range[i + 1]:]
        l2_train = pc['L2'][:l2_range[i]] + pc['L2'][l2_range[i + 1]:]

        joint_dataset = l0_train + l1_train + l2_train
        random.shuffle(joint_dataset)
        
        joint_ibm2 = IBM2(joint_dataset, 15)
        correct, total = 0, 0
        for lvl in levels:
            for (example_en, example_ml) in val[lvl]:
                # Score Translations
                best_trans, best_score = None, 0.0
                for t in all_commands:
                    score = joint_ibm2.score(example_en, t)
                    if score >= best_score:
                        best_trans, best_score = t, score
                
                print "Correct:", example_ml, "Predicted:", best_trans, "Score:", best_score
                if best_trans == example_ml:
                    correct += 1
                total += 1
        
        print 'Reward Selection:', float(correct) / float(total)
        reward_selection.append(float(correct) / float(total))
    
    with open(out_path, 'w') as f:
        f.write("Fold Reward Function Accuracies: %s\n" % str(reward_selection))
        f.write("Average Reward Function Accuracy: %s\n" % str(sum(reward_selection) / len(reward_selection)))
コード例 #2
0
def train_model(level, test_level, data):
    with open(data, 'r') as f:
        pc, commands = pickle.load(f)

    if level != test_level:
        pc_train, pc_test = pc[level], pc[test_level]
    else:
        pc_train, pc_test = pc[level][:int(0.9 * len(pc[level])
                                           )], pc[level][int(0.9 *
                                                             len(pc[level])):]
    shuffle(pc_train)
    shuffle(pc_train)
    shuffle(pc_train)

    shuffle(pc_test)
    shuffle(pc_test)
    shuffle(pc_test)

    all_commands = commands[level]

    joint_ibm2 = IBM2(pc_train, 15)
    correct, total = 0, 0
    for (example_en, example_ml) in pc_test:
        if level != test_level and not (level in ['L1', 'L2']
                                        and test_level in ['L1', 'L2']):
            example_ml = rf_map[" ".join(example_ml)].split(" ")

        # Score Translations
        best_trans, best_score = None, 0.0
        for t in all_commands:
            score = joint_ibm2.score(example_en, t)
            if score >= best_score:
                best_trans, best_score = t, score

        if best_trans == example_ml:
            correct += 1
        total += 1

    #print 'Test Accuracy:', float(correct) / float(total)
    sys.stdout.write(str(float(correct) / float(total)) + ',')
    sys.stdout.flush()
    print
コード例 #3
0
def data_curve(save_id, step=20, save_fig=False):
    """
    Plots accuracy over number of examples, across all-levels.
    """
    data = {}
    for lvl in levels:
        nl_tokens, ml_tokens = get_tokens(nl_format % lvl), get_tokens(
            ml_format % lvl)
        ml_commands = get_tokens(commands_format % lvl)
        pc = zip(*(nl_tokens, ml_tokens))
        shuffle(pc)
        shuffle(pc)
        shuffle(pc)
        pc_train, pc_test = pc[:int(0.9 * len(pc))], pc[int(0.9 * len(pc)):]
        data[lvl] = (pc_train, pc_test, ml_commands)

    chunk_sizes, accuracies, level_accuracies, level_confusion = [], [], [], {}
    for lvl in levels:
        level_confusion[lvl] = {}
        for lvl2 in levels:
            level_confusion[lvl][lvl2] = 0

    for chunk_size in range(step, min(map(lambda z: len(z[0]), data.values())),
                            step):
        l0_dataset = list(data["L0"][0][:chunk_size])
        l1_dataset = list(data["L1"][0][:chunk_size])
        l2_dataset = list(data["L2"][0][:chunk_size])
        joint_dataset = l0_dataset + l1_dataset + l2_dataset
        shuffle(joint_dataset)
        print 'Training IBM Model 2 on Chunk:', chunk_size

        models = {
            "L0": IBM2(l0_dataset, 15),
            "L1": IBM2(l1_dataset, 15),
            "L2": IBM2(l2_dataset, 15)
        }
        joint_ibm2 = IBM2(joint_dataset, 15)

        correct, total, lvl_correct = 0, 0, 0
        for lvl in data:
            pc_test = data[lvl][1]
            for i in range(len(pc_test) - 1):
                # Get test command
                example_en, example_ml = pc_test[i]

                # Pick Level
                level, level_max = "", 0.0
                for k in data:
                    commands, curr_sum = data[k][2], 0.0
                    for c in commands:
                        curr_sum += joint_ibm2.score(example_en, c)
                    lvl_signal = curr_sum / len(commands)
                    if lvl_signal >= level_max:
                        level, level_max = k, lvl_signal

                level_confusion[level][lvl] += 1
                if level == lvl:
                    ml_commands = data[lvl][2]
                    lvl_correct += 1

                    # Score Translations
                    best_trans, best_score = None, 0.0
                    for t in ml_commands:
                        score = models[lvl].score(example_en, t)
                        if score > best_score:
                            best_trans, best_score = t, score
                    print best_trans, best_score

                    # Update Counters
                    if best_trans == example_ml:
                        correct += 1
                total += 1

        print 'Chunk %s Level Selection Accuracy:' % str(chunk_size), float(
            lvl_correct) / float(total)
        print 'Chunk %s Test Accuracy:' % str(chunk_size), float(
            correct) / float(total)
        chunk_sizes.append(chunk_size)
        accuracies.append(float(correct) / float(total))
        level_accuracies.append(float(lvl_correct) / float(total))

    # Print Chunk Sizes, Accuracies
    print 'Chunk Sizes:', chunk_sizes
    print 'Accuracies:', accuracies
    print 'Level Selection Accuracies:', level_accuracies

    if save_fig:
        # Plot Data Curve
        plt.plot(chunk_sizes, accuracies)
        plt.title('Dual Model Data Curve')
        plt.xlabel('Number of Examples')
        plt.ylabel('Reward Function Accuracy')
        #plt.show()
        plt.savefig('./ibm_dual_data_{0}.png'.format(save_id))
        plt.clf()

        # Plot Level Selection Accuracy Curve
        plt.plot(chunk_sizes, level_accuracies)
        plt.title('Dual Model AMDP Level Selection Data Curve')
        plt.xlabel('Number of Examples')
        plt.ylabel('Level Selection Accuracy')
        plt.savefig('./ibm_dual_level_{0}.png'.format(save_id))

    print 'lc', level_confusion
    return chunk_sizes, accuracies, level_accuracies, pandas.DataFrame(
        level_confusion)
コード例 #4
0
def get_dataframe(level, model='ibm2'):
    """
    Given the specific level to train on, take an arbitrary 90-10 split of the level data, then
    build the confusion matrix (represented as a dataframe).

    :param level: Level to train on.
    :return DataFrame representing the Confusion Matrix.
    """
    tf.reset_default_graph()
    # Load Data
    nl_tokens, ml_tokens = get_tokens(nl_format % level), get_tokens(
        ml_format % level)
    ml_commands = get_tokens(commands_format % level)
    pc = zip(*(nl_tokens, ml_tokens))
    shuffle(pc)
    shuffle(pc)
    shuffle(pc)
    pc_train, pc_test = pc[:int(0.9 * len(pc))], pc[int(0.9 * len(pc)):]

    # Initialize Confusion Matrix
    confusion_matrix = {}
    for i in ml_commands:
        confusion_matrix[convert(i)] = {}
        for j in ml_commands:
            confusion_matrix[convert(i)][convert(j)] = 0

    # Train Model
    if model == 'rnn':
        print 'Training RNN Classifier'
        m = RNNClassifier(list(pc_train), ml_commands)
    elif model == 'nn':
        print 'Training NN Classifier'
        m = NNClassifier(list(pc_train), ml_commands)
    else:
        print 'Training IBM Model!'
        m = IBM2(pc_train, 15)

    # Evaluate on Test Data
    correct, total = 0, 0
    for i in range(len(pc_test) - 1):
        # Get test command
        example_en, example_ml = pc_test[i]

        # Score Translations
        if model == 'ibm2':
            best_trans, best_score = None, 0.0
            for t in ml_commands:
                score = m.score(example_en, t)
                if score > best_score:
                    best_trans, best_score = t, score

        elif model in ['rnn', 'nn']:
            best_trans, best_score = m.score(example_en)

        # Update Counters
        total += 1
        if best_trans == example_ml:
            correct += 1

        # Update Confusion Matrix
        confusion_matrix[convert(example_ml)][convert(best_trans)] += 1

    # Return Matrix, Accuracy
    return pandas.DataFrame(confusion_matrix), float(correct) / float(total)
コード例 #5
0
ファイル: run_ibm.py プロジェクト: siddk/py-amdp
def train_model():
    data = {}
    for lvl in levels:
        nl_tokens, ml_tokens = get_tokens(nl_format % lvl), get_tokens(
            ml_format % lvl)
        ml_commands = get_tokens(commands_format % lvl)
        pc = zip(*(nl_tokens, ml_tokens))
        shuffle(pc)
        shuffle(pc)
        shuffle(pc)
        pc_train, pc_test = pc[:int(0.9 * len(pc))], pc[int(0.9 * len(pc)):]
        data[lvl] = (pc_train, pc_test, ml_commands)

    l0_pc, l1_pc, l2_pc = list(data["L0"][0][:]), list(data["L1"][0][:]), list(
        data["L2"][0][:])
    joint_dataset = l0_pc + l1_pc + l2_pc
    shuffle(joint_dataset)

    models = {
        "L0": IBM2(l0_pc, 15),
        "L1": IBM2(l1_pc, 15),
        "L2": IBM2(l2_pc, 15)
    }
    joint_ibm2 = IBM2(joint_dataset, 15)

    correct, total, lvl_correct = 0, 0, 0
    for lvl in data:
        pc_test = data[lvl][1]
        for i in range(len(pc_test) - 1):
            # Get test command
            example_en, example_ml = pc_test[i]

            # Pick Level
            level, level_max = "", 0.0
            for k in data:
                commands, curr_sum = data[k][2], 0.0
                for c in commands:
                    curr_sum += joint_ibm2.score(example_en, c)
                lvl_signal = curr_sum / len(commands)
                if lvl_signal >= level_max:
                    level, level_max = k, lvl_signal

            ml_commands = data[level][2]
            # Score Translations
            best_trans, best_score = None, 0.0
            for t in ml_commands:
                score = models[level].score(example_en, t)
                if score > best_score:
                    best_trans, best_score = t, score
            print best_trans, best_score

            # Update Counters
            if level == lvl:
                lvl_correct += 1
            if best_trans == example_ml:
                correct += 1
            total += 1

    print 'Level Selection Accuracy:', float(lvl_correct) / float(total)
    print 'Test Accuracy:', float(correct) / float(total)

    with open('ibm_ckpt/models.pik', 'w') as f:
        pickle.dump((models, joint_ibm2), f)
コード例 #6
0
ファイル: data_curve.py プロジェクト: siddk/py-amdp
def loo_data_curve(nl_level, ml_level, save_id, model='ibm2', step=20, save_fig=True):
    """
    Performs LOO Cross-Validation, generates accuracy for the given Natural Language - Machine
    Language Pair.

    :param nl_level: Natural Language Level => One of 'L0', 'L1', or 'L2'
    :param ml_level: Machine Language Level => One of 'L0', 'L1', or 'L2'
    """
    tf.reset_default_graph()
    nl_tokens, ml_tokens = get_tokens(nl_format % nl_level), get_tokens(ml_format % ml_level)
    ml_commands = get_tokens(commands_format % ml_level)
    pc = zip(*(nl_tokens, ml_tokens))
    shuffle(pc)
    shuffle(pc)
    shuffle(pc)
    pc_train, pc_test = pc[:int(0.9 * len(pc))], pc[int(0.9 * len(pc)):]
    
    if model == 'rnn':
        m = RNNClassifier(list(pc_train), ml_commands)
    elif model == 'nn':
        m = NNClassifier(list(pc_train), ml_commands)

    chunk_sizes, accuracies = [], []
    for chunk_size in range(step, len(pc_train), step):
        dataset = list(pc_train[:chunk_size])
        print 'Training Model on Chunk:', chunk_size
        if model == 'ibm2':
            m = IBM2(dataset, 15)
        elif model in ['rnn', 'nn']:
            m.fit(chunk_size)

        correct, total = 0, 0
        for i in range(len(pc_test) - 1):
            # Get test command
            example_en, example_ml = pc_test[i]

            # Score Translations
            if model == 'ibm2':
                best_trans, best_score = None, 0.0
                for t in ml_commands:
                    score = m.score(example_en, t)
                    if score > best_score:
                        best_trans, best_score = t, score

            elif model in ['rnn', 'nn']:
                best_trans, best_score = m.score(example_en)

            # Print Statistics
            print best_trans, best_score

            # Update Counters
            total += 1
            if best_trans == example_ml:
                correct += 1

        print 'Chunk %s Test Accuracy:' % str(chunk_size), float(correct) / float(total)
        chunk_sizes.append(chunk_size)
        accuracies.append(float(correct) / float(total))

    # Print Chunk Sizes, Accuracies
    print 'Chunk Sizes:', chunk_sizes
    print 'Accuracies:', accuracies

    if save_fig:
        # Plot Data Curve
        plt.plot(chunk_sizes, accuracies)
        plt.title('%s - %s Data Curve' % (nl_level, ml_level))
        plt.xlabel('Number of Examples')
        plt.ylabel('Accuracy')
        #plt.show()
        plt.savefig('./{0}_{1}_{2}_{3}.png'.format(model, nl_level, ml_level, save_id))
        plt.clf()

    return chunk_sizes, accuracies