def main(): # capture the config path from the run arguments # then process the json configuration file try: args = get_args() config = process_config(args.config) except Exception as e: print("missing or invalid arguments %s" % e) exit(0) os.environ["CUDA_VISIBLE_devices"] = config.gpu import tensorflow as tf # create the experiments dirs create_dirs([config.summary_dir, config.checkpoint_dir]) # create tensorflow session gpuconfig = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) gpuconfig.gpu_options.visible_device_list = config.gpu sess = tf.Session(config=gpuconfig) # create your data generator data = DataGenerator(config) # create an instance of the model you want model = invariant_basic(config, data) # create trainer and pass all the previous components to it trainer = Trainer(sess, model, data, config) # load model if exists model.load(sess) # here you train your model trainer.train()
def main(): # capture the config path from the run arguments # then process the json configuration file try: args = get_args() config = process_config(args.config) except Exception as e: print("missing or invalid arguments %s" % e) exit(0) os.environ["CUDA_VISIBLE_devices"] = config.gpu import tensorflow as tf import numpy as np tf.set_random_seed(100) np.random.seed(100) base_summary_folder = config.summary_dir base_exp_name = config.exp_name # create the experiments dirs create_dirs([config.summary_dir, config.checkpoint_dir]) for lr in [0.00008 * (2**i) for i in range(8)]: for decay in [0.6, 0.7, 0.8, 0.9]: config.learning_rate = lr config.decay_rate = decay config.exp_name = base_exp_name + " lr={0}_decay={1}".format( lr, decay) curr_dir = os.path.join(base_summary_folder, "lr={0}_decay={1}".format(lr, decay)) config.summary_dir = curr_dir create_dirs([curr_dir]) # create your data generator data = DataGenerator(config) gpuconfig = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) gpuconfig.gpu_options.visible_device_list = config.gpu sess = tf.Session(config=gpuconfig) # create an instance of the model you want model = invariant_basic(config, data) # create trainer and pass all the previous components to it trainer = Trainer(sess, model, data, config) # here you train your model acc, loss = trainer.train() sess.close() tf.reset_default_graph() doc_utils.summary_10fold_results(config.summary_dir)
def main(): # capture the config path from the run arguments # then process the json configuration file try: args = get_args() config = process_config(args.config) except Exception as e: print("missing or invalid arguments %s" % e) exit(0) os.environ["CUDA_VISIBLE_DEVICES"] = config.gpu # import tensorflow as tf import torch # create the experiments dirs create_dirs([config.summary_dir, config.checkpoint_dir]) # create tensorflow session # gpuconfig = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) # gpuconfig.gpu_options.visible_device_list = config.gpus_list # gpuconfig.gpu_options.allow_growth = True # sess = tf.Session(config=gpuconfig) if config.cuda: print(f'Using GPU : {torch.cuda.get_device_name(int(config.gpu))}') else: print(f'Using CPU') # create your data generator data = DataGenerator(config) # data = torch.from_numpy(data) # create an instance of the model you want model = invariant_basic(config, data) if config.cuda: model = model.cuda() for name, param in model.named_parameters(): # if param.device.type != 'cuda': print(f'{name}, device type {param.device.type}') # create trainer and pass all the previous components to it # trainer = Trainer(sess, model, data, config) trainer = Trainer(model, data, config) # load model if exists # model.load(sess) # here you train your model trainer.train()
def main(): # capture the config path from the run arguments # then process the json configuration file try: args = get_args() config = process_config(args.config, dataset_name='QM9') except Exception as e: print("missing or invalid arguments %s" % e) exit(0) os.environ["CUDA_VISIBLE_DEVICES"] = config.gpu import tensorflow as tf import numpy as np tf.set_random_seed(100) np.random.seed(100) print("lr = {0}".format(config.hyperparams.learning_rate)) print("decay = {0}".format(config.hyperparams.decay_rate)) if config.target_param is not False: # (0 == False) while (0 is not False) print("target parameter: {0}".format(config.target_param)) print(config.architecture) # create the experiments dirs create_dirs([config.summary_dir, config.checkpoint_dir]) doc_utils.doc_used_config(config) # create your data generator data = DataGenerator(config) gpuconfig = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) gpuconfig.gpu_options.visible_device_list = config.gpus_list gpuconfig.gpu_options.allow_growth = True sess = tf.Session(config=gpuconfig) # create an instance of the model you want model = invariant_basic(config, data) # create trainer and pass all the previous components to it trainer = Trainer(sess, model, data, config) # here you train your model trainer.train() # test model, restore best model test_dists, test_loss = trainer.test(load_best_model=True) sess.close() tf.reset_default_graph() doc_utils.summary_qm9_results(config.summary_dir, test_dists, test_loss, trainer.best_epoch)
def main(): # capture the config path from the run arguments # then process the json configuration file try: args = get_args() config = process_config(args.config) except Exception as e: print("missing or invalid arguments %s" % e) exit(0) os.environ["CUDA_VISIBLE_DEVICES"] = config.gpu import tensorflow as tf import numpy as np tf.set_random_seed(100) np.random.seed(100) print("lr = {0}".format(config.learning_rate)) print("decay = {0}".format(config.decay_rate)) print(config.architecture) # create the experiments dirs create_dirs([config.summary_dir, config.checkpoint_dir]) for exp in range(1, config.num_exp + 1): for fold in range(1, 11): print("Experiment num = {0}\nFold num = {1}".format(exp, fold)) # create your data generator config.num_fold = fold data = DataGenerator(config) gpuconfig = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) gpuconfig.gpu_options.visible_device_list = config.gpus_list gpuconfig.gpu_options.allow_growth = True sess = tf.Session(config=gpuconfig) # create an instance of the model you want model = invariant_basic(config, data) # create trainer and pass all the previous components to it trainer = Trainer(sess, model, data, config) # here you train your model acc, loss = trainer.train() doc_utils.doc_results(acc, loss, exp, fold, config.summary_dir) sess.close() tf.reset_default_graph() doc_utils.summary_10fold_results(config.summary_dir)