コード例 #1
0
ファイル: test_train.py プロジェクト: opendedup/visionbackend
    def test_train_mlengine(self):
        train_job.train_job['name'] = str(uuid.uuid4())
        job = Job(train_job.train_job['name'], train_job.train_job)
        job.type = 'preprocess'
        job.init_temp(str(uuid.uuid4()))
        try:
            logging.info("step1")
            job.init_storage()
            logging.info("step2")
            if not hasattr(job, 'label_file') or job.label_file is None:
                job.label_file = 'corpus/' + job.prep_name + "/object-detection.pbtxt"
            job.init_labels()
            self.assertGreater(len(job.categories), 0)
            logging.info("step3")
            source = json.loads(
                job.download_to_string('corpus/' + job.prep_name +
                                       "/job_def.json"))
            job.project_name = source['project_name']
            logging.info("step4")

            updateFileML(job)
            logging.info("step5")
            upload_model(job)
            logging.info("step6")
            upload_packages(job)
            logging.info("step7")
            start_ml_engine(job)
            logging.info("step8")
            history = json.loads(
                job.download_to_string(
                    'corpus/' + job.prep_name + "/job_history.json", ))
            upload_metadata(job, "training_jobs/" + job.name, history)
        finally:
            job.cleanup()
コード例 #2
0
ファイル: test_train.py プロジェクト: opendedup/visionbackend
    def test_train_mlengine_copy(self):
        train_job.train_job['name'] = str(uuid.uuid4())
        job = Job(train_job.train_job['name'], train_job.train_job)
        job.type = 'preprocess'
        job.init_temp(str(uuid.uuid4()))
        try:
            logging.info("step1")
            job.init_storage()
            logging.info("step2")
            if hasattr(job,
                       'source_training') and job.source_training is not '':
                sjd = json.loads(
                    job.download_to_string('training_jobs/' +
                                           job.source_training +
                                           "/job_def.json"))
                job.num_train_steps += sjd['num_train_steps']
                job.model = sjd['model']
                st = 'training_jobs/{}/'.format(job.source_training)
                dt = 'training_jobs/{}/'.format(job.name)
                job.copy_folder(st, dt)
                job.delete_cloud_file('{}{}'.format(dt, "job_def.json"))
                job.delete_cloud_file('{}{}'.format(dt, "job_history.json"))
            logging.info("step3")
            if not hasattr(job, 'label_file') or job.label_file is None:
                job.label_file = 'corpus/' + job.prep_name + "/object-detection.pbtxt"
            job.init_labels()
            self.assertGreater(len(job.categories), 0)
            logging.info("step4")
            source = json.loads(
                job.download_to_string('corpus/' + job.prep_name +
                                       "/job_def.json"))
            job.project_name = source['project_name']
            logging.info("step5")

            updateFileML(job)
            logging.info("step6")
            upload_model(job)
            logging.info("step7")
            upload_packages(job)
            logging.info("step8")
            start_ml_engine(job)
            logging.info("step9")
            history = json.loads(
                job.download_to_string(
                    'corpus/' + job.prep_name + "/job_history.json", ))
            upload_metadata(job, "training_jobs/" + job.name, history)
        finally:
            job.cleanup()