def make_layers(cfg, network_width_multiplier, batch_norm=False, groups=1): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: if in_channels == 3: conv2d = nl.SharableConv2d(in_channels, int(v * network_width_multiplier), kernel_size=3, padding=1, bias=False) else: conv2d = nl.SharableConv2d(in_channels, int(v * network_width_multiplier), kernel_size=3, padding=1, bias=False, groups=groups) if batch_norm: layers += [ conv2d, nn.BatchNorm2d(int(v * network_width_multiplier)), nn.ReLU(inplace=True) ] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = int(v * network_width_multiplier) layers += [ View(-1, int(512 * network_width_multiplier) * 7 * 7), nl.SharableLinear( int(512 * network_width_multiplier) * 7 * 7, int(4096 * network_width_multiplier)), nn.ReLU(True), # We need Dropout() for 224x224 nn.Dropout(), nl.SharableLinear(int(4096 * network_width_multiplier), int(4096 * network_width_multiplier)), nn.ReLU(True), nn.Dropout() ] return nn.Sequential(*layers)
def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nl.SharableConv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nl.SharableConv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation)
def __init__(self, block, layers, dataset_history, dataset2num_classes, network_width_multiplier, shared_layer_info, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.network_width_multiplier = network_width_multiplier self.shared_layer_info = shared_layer_info self.inplanes = int(64 * network_width_multiplier) self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format( replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nl.SharableConv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, network_width_multiplier * 64, layers[0]) self.layer2 = self._make_layer(block, network_width_multiplier * 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, network_width_multiplier * 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, network_width_multiplier * 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.datasets, self.classifiers = dataset_history, nn.ModuleList() self.dataset2num_classes = dataset2num_classes # we delete default self.classifier for imagenet, because we manually add it in packnet_imagenet_main.py if self.datasets: self._reconstruct_classifiers() for m in self.modules(): if isinstance(m, nl.SharableConv2d): #nn.init.constant_(m.weight, 0) nn.init.normal_(m.weight, 0, 0.001) #nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0)