コード例 #1
0
def rand_crop(crop_img, crop_seg, mode=ModelPhase.TRAIN):
    """
    随机裁剪图片和标签图, 若crop尺寸大于原始尺寸,分别使用均值和ignore值填充再进行crop,
    crop尺寸与原始尺寸一致,返回原图,crop尺寸小于原始尺寸直接crop

    Args:
        crop_img(numpy.ndarray): 输入图像
        crop_seg(numpy.ndarray): 标签图
        mode(string): 模式, 默认训练模式,验证或预测、可视化模式时crop尺寸需大于原始图片尺寸

    Returns:
        裁剪后的图片和标签图

    """

    img_height = crop_img.shape[0]
    img_width = crop_img.shape[1]

    if ModelPhase.is_train(mode):
        crop_width = cfg.TRAIN_CROP_SIZE[0]
        crop_height = cfg.TRAIN_CROP_SIZE[1]
    else:
        crop_width = cfg.EVAL_CROP_SIZE[0]
        crop_height = cfg.EVAL_CROP_SIZE[1]

    if not ModelPhase.is_train(mode):
        if (crop_height < img_height or crop_width < img_width):
            raise Exception(
                "Crop size({},{}) must large than img size({},{}) when in EvalPhase."
                .format(crop_width, crop_height, img_width, img_height))

    if img_height == crop_height and img_width == crop_width:
        return crop_img, crop_seg
    else:
        pad_height = max(crop_height - img_height, 0)
        pad_width = max(crop_width - img_width, 0)
        if (pad_height > 0 or pad_width > 0):
            crop_img = cv2.copyMakeBorder(crop_img,
                                          0,
                                          pad_height,
                                          0,
                                          pad_width,
                                          cv2.BORDER_CONSTANT,
                                          value=cfg.DATASET.PADDING_VALUE)
            if crop_seg is not None:
                crop_seg = cv2.copyMakeBorder(crop_seg,
                                              0,
                                              pad_height,
                                              0,
                                              pad_width,
                                              cv2.BORDER_CONSTANT,
                                              value=cfg.DATASET.IGNORE_INDEX)
            img_height = crop_img.shape[0]
            img_width = crop_img.shape[1]

        if crop_height > 0 and crop_width > 0:
            h_off = np.random.randint(img_height - crop_height + 1)
            w_off = np.random.randint(img_width - crop_width + 1)

            crop_img = crop_img[h_off:(crop_height + h_off),
                                w_off:(w_off + crop_width), :]
            if crop_seg is not None:
                crop_seg = crop_seg[h_off:(crop_height + h_off),
                                    w_off:(w_off + crop_width)]
        return crop_img, crop_seg
コード例 #2
0
    def process_image(self, line, data_dir, mode):
        """ process_image """
        img, grt, img_name, grt_name = self.load_image(
            line, data_dir, mode=mode)
        if mode == ModelPhase.TRAIN:
            img, grt = aug.resize(img, grt, mode)
            if cfg.AUG.RICH_CROP.ENABLE:
                if cfg.AUG.RICH_CROP.BLUR:
                    if cfg.AUG.RICH_CROP.BLUR_RATIO <= 0:
                        n = 0
                    elif cfg.AUG.RICH_CROP.BLUR_RATIO >= 1:
                        n = 1
                    else:
                        n = int(1.0 / cfg.AUG.RICH_CROP.BLUR_RATIO)
                    if n > 0:
                        if np.random.randint(0, n) == 0:
                            radius = np.random.randint(3, 10)
                            if radius % 2 != 1:
                                radius = radius + 1
                            if radius > 9:
                                radius = 9
                            img = cv2.GaussianBlur(img, (radius, radius), 0, 0)

                img, grt = aug.random_rotation(
                    img,
                    grt,
                    rich_crop_max_rotation=cfg.AUG.RICH_CROP.MAX_ROTATION,
                    mean_value=cfg.DATASET.PADDING_VALUE)

                img, grt = aug.rand_scale_aspect(
                    img,
                    grt,
                    rich_crop_min_scale=cfg.AUG.RICH_CROP.MIN_AREA_RATIO,
                    rich_crop_aspect_ratio=cfg.AUG.RICH_CROP.ASPECT_RATIO)
                img = aug.hsv_color_jitter(
                    img,
                    brightness_jitter_ratio=cfg.AUG.RICH_CROP.
                    BRIGHTNESS_JITTER_RATIO,
                    saturation_jitter_ratio=cfg.AUG.RICH_CROP.
                    SATURATION_JITTER_RATIO,
                    contrast_jitter_ratio=cfg.AUG.RICH_CROP.
                    CONTRAST_JITTER_RATIO)

            if cfg.AUG.FLIP:
                if cfg.AUG.FLIP_RATIO <= 0:
                    n = 0
                elif cfg.AUG.FLIP_RATIO >= 1:
                    n = 1
                else:
                    n = int(1.0 / cfg.AUG.FLIP_RATIO)
                if n > 0:
                    if np.random.randint(0, n) == 0:
                        img = img[::-1, :, :]
                        grt = grt[::-1, :]

            if cfg.AUG.MIRROR:
                if np.random.randint(0, 2) == 1:
                    img = img[:, ::-1, :]
                    grt = grt[:, ::-1]

            img, grt = aug.rand_crop(img, grt, mode=mode)
        elif ModelPhase.is_eval(mode):
            img, grt = aug.resize(img, grt, mode=mode)
            img, grt = aug.rand_crop(img, grt, mode=mode)
        elif ModelPhase.is_visual(mode):
            org_shape = [img.shape[0], img.shape[1]]
            img, grt = aug.resize(img, grt, mode=mode)
            valid_shape = [img.shape[0], img.shape[1]]
            img, grt = aug.rand_crop(img, grt, mode=mode)
        else:
            raise ValueError("Dataset mode={} Error!".format(mode))

        # Normalize image
        img = self.normalize_image(img)

        if ModelPhase.is_train(mode) or ModelPhase.is_eval(mode):
            grt = np.expand_dims(np.array(grt).astype('int32'), axis=0)
            ignore = (grt != cfg.DATASET.IGNORE_INDEX).astype('int32')

        if ModelPhase.is_train(mode):
            return (img, grt, ignore)
        elif ModelPhase.is_eval(mode):
            return (img, grt, ignore)
        elif ModelPhase.is_visual(mode):
            return (img, grt, img_name, valid_shape, org_shape)
コード例 #3
0
ファイル: reader.py プロジェクト: zhgv/PaddleSeg
    def process_image(self, line, data_dir, mode):
        """ process_image """
        img1, img2, grt1, grt2, img1_name, img2_name, grt1_name, grt2_name = self.load_image(
            line, data_dir, mode=mode)
        grt1 = grt1 + 1 if grt1 is not None else None
        if mode == ModelPhase.TRAIN:
            img1, img2, grt1, grt2 = aug.resize(img1, img2, grt1, grt2, mode)
            img1, img2, grt1, grt2 = aug.rand_crop(
                img1, img2, grt1, grt2, mode=mode)
            if cfg.AUG.RICH_CROP.ENABLE:
                if cfg.AUG.RICH_CROP.BLUR:
                    if cfg.AUG.RICH_CROP.BLUR_RATIO <= 0:
                        n = 0
                    elif cfg.AUG.RICH_CROP.BLUR_RATIO >= 1:
                        n = 1
                    else:
                        n = int(1.0 / cfg.AUG.RICH_CROP.BLUR_RATIO)
                    if n > 0:
                        if np.random.randint(0, n) == 0:
                            radius = np.random.randint(3, 10)
                            if radius % 2 != 1:
                                radius = radius + 1
                            if radius > 9:
                                radius = 9
                            img1 = cv2.GaussianBlur(img1, (radius, radius), 0,
                                                    0)
                            if img2 is not None:
                                img2 = cv2.GaussianBlur(img2, (radius, radius),
                                                        0, 0)

                img1, img2, grt1, grt2 = aug.random_rotation(
                    img1,
                    img2,
                    grt1,
                    grt2,
                    rich_crop_max_rotation=cfg.AUG.RICH_CROP.MAX_ROTATION,
                    mean_value=cfg.DATASET.PADDING_VALUE)

                img1, img2, grt1, grt2 = aug.rand_scale_aspect(
                    img1,
                    img2,
                    grt1,
                    grt2,
                    rich_crop_min_scale=cfg.AUG.RICH_CROP.MIN_AREA_RATIO,
                    rich_crop_aspect_ratio=cfg.AUG.RICH_CROP.ASPECT_RATIO)

                img1, img2 = aug.hsv_color_jitter(
                    img1,
                    img2,
                    brightness_jitter_ratio=cfg.AUG.RICH_CROP.
                    BRIGHTNESS_JITTER_RATIO,
                    saturation_jitter_ratio=cfg.AUG.RICH_CROP.
                    SATURATION_JITTER_RATIO,
                    contrast_jitter_ratio=cfg.AUG.RICH_CROP.
                    CONTRAST_JITTER_RATIO)

            if cfg.AUG.RANDOM_ROTATION90:
                rot_k = np.random.randint(0, 4)
                img1 = np.rot90(img1, k=rot_k)
                img2 = np.rot90(img2, k=rot_k) if img2 is not None else None
                grt1 = np.rot90(grt1, k=rot_k)
                grt2 = np.rot90(grt2, k=rot_k) if grt2 is not None else None

            if cfg.AUG.FLIP:
                if cfg.AUG.FLIP_RATIO <= 0:
                    n = 0
                elif cfg.AUG.FLIP_RATIO >= 1:
                    n = 1
                else:
                    n = int(1.0 / cfg.AUG.FLIP_RATIO)
                if n > 0:
                    if np.random.randint(0, n) == 0:
                        img1 = img1[::-1, :, :]
                        img2 = img2[::-1, :, :] if img2 is not None else None
                        grt1 = grt1[::-1, :]
                        grt2 = grt2[::-1, :] if grt2 is not None else None

            if cfg.AUG.MIRROR:
                if np.random.randint(0, 2) == 1:
                    img1 = img1[:, ::-1, :]
                    img2 = img2[:, ::-1, :] if img2 is not None else None
                    grt1 = grt1[:, ::-1]
                    grt2 = grt2[:, ::-1] if grt2 is not None else None

        elif ModelPhase.is_eval(mode):
            img1, img2, grt1, grt2 = aug.resize(
                img1, img2, grt1, grt2, mode=mode)
            img1, img2, grt1, grt2 = aug.rand_crop(
                img1, img2, grt1, grt2, mode=mode)
            if cfg.TEST.TEST_AUG:
                img1 = self.test_aug(img1)
                img2 = self.test_aug(img2) if img2 is not None else None

        elif ModelPhase.is_visual(mode):
            org_shape = [img1.shape[0], img1.shape[1]]
            img1, img2, grt1, grt2 = aug.resize(
                img1, img2, grt1, grt2, mode=mode)
            valid_shape = [img1.shape[0], img1.shape[1]]
            img1, img2, grt1, grt2 = aug.rand_crop(
                img1, img2, grt1, grt2, mode=mode)
        else:
            raise ValueError("Dataset mode={} Error!".format(mode))

        # Normalize image
        img1 = self.normalize_image(img1)
        img2 = self.normalize_image(img2) if img2 is not None else None

        if grt2 is not None:
            grt = grt1 * cfg.DATASET.NUM_CLASSES + grt2

            unchange_idx = np.where((grt1 - grt2) == 0)
            grt[unchange_idx] = 0
            if cfg.DATASET.NUM_CLASSES == 2:
                grt[np.where(grt != 0)] = 1

            ignore_idx = np.where((grt1 == cfg.DATASET.IGNORE_INDEX)
                                  | (grt2 == cfg.DATASET.IGNORE_INDEX))
            grt[ignore_idx] = cfg.DATASET.IGNORE_INDEX
        else:
            grt = grt1

        if ModelPhase.is_train(mode) or ModelPhase.is_eval(mode):
            grt = np.expand_dims(np.array(grt).astype('int32'), axis=0)
            ignore = (grt != cfg.DATASET.IGNORE_INDEX).astype('int32')

        if cfg.DATASET.INPUT_IMAGE_NUM == 1:
            if ModelPhase.is_train(mode):
                return (img1, grt, ignore)
            elif ModelPhase.is_eval(mode):
                return (img1, grt, ignore)
            elif ModelPhase.is_visual(mode):
                return (img1, grt, img1_name, valid_shape, org_shape)
        else:
            if ModelPhase.is_train(mode):
                return (img1, img2, grt, ignore)
            elif ModelPhase.is_eval(mode):
                return (img1, img2, grt, ignore)
            elif ModelPhase.is_visual(mode):
                return (img1, img2, grt, img1_name, img2_name, valid_shape,
                        org_shape)
コード例 #4
0
ファイル: reader.py プロジェクト: zjj-2015/seg-for-fun
    def load_image(self, line, src_dir, mode=ModelPhase.TRAIN):
        # original image cv2.imread flag setting
        cv2_imread_flag = cv2.IMREAD_COLOR
        if cfg.DATASET.IMAGE_TYPE == "rgba":
            # If use RBGA 4 channel ImageType, use IMREAD_UNCHANGED flags to
            # reserver alpha channel
            cv2_imread_flag = cv2.IMREAD_UNCHANGED

        parts = line.strip().split(cfg.DATASET.SEPARATOR)
        if len(parts) != 2:
            if mode == ModelPhase.TRAIN or mode == ModelPhase.EVAL:
                raise Exception("File list format incorrect! It should be"
                                " image_name{}label_name\\n".format(
                                    cfg.DATASET.SEPARATOR))
            img_name, grt_name = parts[0], None
        else:
            img_name, grt_name = parts[0], parts[1]

        img_path = os.path.join(src_dir, img_name)
        img = cv2_imread(img_path, cv2_imread_flag)

        if grt_name is not None:
            grt_path = os.path.join(src_dir, grt_name)
            grt = pil_imread(grt_path)
        else:
            grt = None

        if img is None:
            raise Exception(
                "Empty image, source image path: {}".format(img_path))

        img_height = img.shape[0]
        img_width = img.shape[1]

        if grt is not None:
            grt_height = grt.shape[0]
            grt_width = grt.shape[1]

            if img_height != grt_height or img_width != grt_width:
                if ModelPhase.is_visual(mode):
                    pass
                else:
                    raise Exception(
                        "Source img and label img must has the same size.")
        else:
            if mode == ModelPhase.TRAIN or mode == ModelPhase.EVAL:
                raise Exception(
                    "No laber image path for image '{}' when training or evaluating. "
                    .format(img_path))

        if len(img.shape) < 3:
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

        img_channels = img.shape[2]
        if img_channels < 3:
            raise Exception("PaddleSeg only supports gray, rgb or rgba image")
        if img_channels != cfg.DATASET.DATA_DIM:
            raise Exception(
                "Input image channel({}) is not match cfg.DATASET.DATA_DIM({}), img_name={}"
                .format(img_channels, cfg.DATASET.DATADIM, img_name))
        if img_channels != len(cfg.MEAN):
            raise Exception(
                "Image name {}, image channels {} do not equal the length of cfg.MEAN {}."
                .format(img_name, img_channels, len(cfg.MEAN)))
        if img_channels != len(cfg.STD):
            raise Exception(
                "Image name {}, image channels {} do not equal the length of cfg.STD {}."
                .format(img_name, img_channels, len(cfg.STD)))

        return img, grt, img_name, grt_name