images_list = [] labels_list = [] preds_list = [] model.eval() with torch.no_grad(): print("Begininng first batch") prev = datetime.datetime.now() for batched in valid_loader: images, labels = batched images_np = images.numpy().transpose(0, 2, 3, 1) labels_np = labels.numpy() images, labels = images.to(device), labels.to(device) preds = model.tta(images, net_type='deeplab') preds = preds.argmax(dim=1) preds_np = preds.detach().cpu().numpy() images_list.append(images_np) labels_list.append(labels_np) preds_list.append(preds_np) cur = datetime.datetime.now() print(cur - prev) prev = cur if len(images_list) == 20: break images = np.concatenate(images_list) labels = np.concatenate(labels_list)
img = minmax_normalize(img, norm_range=(-1, 1)) # network internal weights range from [-1, 1] img = img.transpose(2, 0, 1) # The transpose part # OpenCV images (hegight, width, channels) # PyTorch tensor (channels, height, width) # in this case (256, 256, 3) -> (3, 256, 256) img = [img] # Specify the batch size # For test, one sample in a batch # (3, 256, 256) -> (1, 3, 256, 256) image = torch.FloatTensor(img) # tensor of float data type image = image.to(device) # let gpu calculate afterwards # Inference time measure prev = datetime.datetime.now() # Prediction using DNN (deeplabv3 plus) pred = model.tta(image, net_type='deeplab') # forward pass (network predction) pred = pred.argmax(dim=1) # best among N images where N is the size of output channel pred_np = pred.detach().cpu().numpy() # let cpu get the prediction print(np.unique(pred_np)) # Inference time record cur = datetime.datetime.now() # Debug image visualization #cv2.imshow('frame', frame) pred_lbl = np.array(palette[pred_np[0]], np.uint8) #cv2.imshow("pred", pred_lbl) blend = np.bitwise_or(frame, pred_lbl) cv2.imshow("blend", blend)
def eval_from_model(split, output_channels, model_path, postproc=False, vis=True, debug=True): model_path = Path(model_path) path, model_dir = os.path.split( model_path.parent) # separate path and filename device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') #work on GPU if available print(f'Device: {device}') if 'mnv2' in model_dir: model = SPPNet(enc_type='mobilenetv2', dec_type='maspp', output_channels=output_channels).to(device) defaults = True else: model = SPPNet(output_channels=output_channels).to(device) defaults = False if device == torch.device('cpu'): param = torch.load(model_path, map_location='cpu' ) # parameters saved in checkpoint via model_path else: param = torch.load( model_path) # parameters saved in checkpoint via model_path print(f'Parameters loaded from {model_path}') model.load_state_dict(param) #apply method load_state_dict to model? del param # delete parameters? Reduce memory usage? dataset = SherbrookeDataset( split=split, net_type='deeplab', defaults=defaults) #reach cityscapes dataset, validation split classes = np.arange(1, dataset.n_classes) img_paths = dataset.img_paths base_dir = dataset.base_dir split = dataset.split if len(img_paths) == 0: raise ValueError('Your dataset seems empty...') else: print(f'{len(img_paths)} images found in {base_dir}\\{split}') model.eval() #apply eval method on model. ? #print(f'Files containing \'{filetype}\' will be converted to \'{colortype}\' colormap and saved to:\n{output_folder}') valid_ious = [] count = 0 predicted_boxes = {} ground_truth_boxes = {} with torch.no_grad(): #dataloader is a 2 element list with images and labels as torch tensors print('Generating predictions...') with tqdm(range(len(dataset))) as _tqdm: for i in _tqdm: count += 1 image, label = dataset[i] img_path = dataset.img_paths[i] #filename = img_path.stem filename = img_path.name #if isinstance(image, tuple): #take only image in label is also returned by __getitem__ # image = image[0] image = image[ None] # mimick dataloader with 4th channel (batch channel) image = image.to(device) # next line reaches to tta.py --> net.py --> xception.py ... # output: predictions (segmentation maps) pred = model.tta(image, net_type='deeplab') # pred = model(image) # pred = F.interpolate(pred, size=label.shape, mode='bilinear', align_corners=True) # pred = pred.argmax(dim=1) pred = pred.detach().cpu().numpy() label = label.numpy() # take first pred of single item list of preds... pred = pred[0] pred = softmax_from_feat_map(pred) # take channel corresponding to softmax scores in class 1. Reduces array to 2D pred = pred[1, :, :] if pred.shape[1] / pred.shape[0] == 4: pred = topcrop(pred, reverse=True) label = topcrop(label, reverse=True) if debug: print( f'Prediction shape after evaluation: {pred.shape}\nLabel shape: {label.shape}' ) if defaults: # set all pixel in pred corresponding to an ignore_pixel in label to 0 pred[label == dataset.ignore_index] = 0 #perc = round(len(np.unique(pred)) *0.5) #find index at median #val_at_perc = np.unique(pred)[perc] val_at_perc = 0.0002 #print( # f'Value at median in prediction is: {val_at_perc}') pred_masked = np.where(pred >= val_at_perc, pred, np.nan) pred_binary = threshold( pred.copy(), value=val_at_perc ) # set values under 0.5 to 0, else to 1. result: binary array bbox_list, scores_list = contour_proc(pred_binary, pred_masked) #add key to predicted_boxes: {'filename': {'boxes':bbox_list, 'scores':scores_list}} predicted_boxes.update( {filename: { "boxes": bbox_list, "scores": scores_list }}) #pred = filter_by_activation(pred, percentile=90) #pred = threshold(pred) bbox_list_lbl, _ = contour_proc(label, label.copy()) #add key to predicted_boxes: {'filename': {'boxes':bbox_list, 'scores':scores_list}} ground_truth_boxes.update({filename: bbox_list_lbl}) if debug: print(f'Label unique values: {np.unique(label)}') _tqdm.set_postfix(OrderedDict(last_image=f'{filename}')) with open('predicted_boxes_GSV.json', 'w') as json_file: json.dump(predicted_boxes, json_file, sort_keys=True) with open('ground_truth_boxes_GSV.json', 'w') as json_file: json.dump(ground_truth_boxes, json_file, sort_keys=True)
class Tester: def __init__( self, model_path='../model/deepglobe_deeplabv3_weights-cityscapes_19-outputs/model.pth', dataset='deepglobe', output_channels=19, split='valid', net_type='deeplab', batch_size=1, shuffle=True): """ Initializes the tester by loading the model with the good parameters. :param model_path: Path to model weights :param dataset: dataset used amongst {'deepglobe', 'pascal', 'cityscapes'} :param output_channels: num of output channels of model :param split: split to be used amongst {'train', 'valid'} :param net_type: model type to be used amongst {'deeplab', 'unet'} :param batch_size: batch size when loading images (always 1 here) :param shuffle: when loading images from dataset """ model_path = '/home/sfoucher/DEV/pytorch-segmentation/model/my_pascal_unet_res18_scse/model.pth' dataset_dir = '/home/sfoucher/DEV/pytorch-segmentation/data/deepglobe_as_pascalvoc/VOCdevkit/VOC2012' output_channels = 8 net_type = 'unet' print('[Tester] [Init] Initializing tester...') self.dataset = dataset self.model_path = model_path # Load model print('[Tester] [Init] Loading model ' + model_path + ' with ' + str(output_channels) + ' output channels...') self.device = torch.device( 'cuda:0' if torch.cuda.is_available() else 'cpu') if net_type == 'unet': self.model = EncoderDecoderNet(output_channels=8, enc_type='resnet18', dec_type='unet_scse', num_filters=8) else: self.model = SPPNet(output_channels=output_channels).to( self.device) param = torch.load(model_path) self.model.load_state_dict(param) del param # Create data loader depending on dataset, split and net type if dataset == 'pascal': self.valid_dataset = PascalVocDataset(split=split, net_type=net_type) elif dataset == 'cityscapes': self.valid_dataset = CityscapesDataset(split=split, net_type=net_type) elif dataset == 'deepglobe': self.valid_dataset = DeepGlobeDataset(base_dir=dataset_dir, target_size=(64, 64), split=split, net_type=net_type) else: raise NotImplementedError self.valid_loader = DataLoader(self.valid_dataset, batch_size=batch_size, shuffle=shuffle) print('[Tester] [Init] ...done!') print('[Tester] [Init] Tester created.') def make_demo_image(self): """ Picks 4 images from dataset randomly and creates image with raw, inferred and label pictures. :return: null """ images_list = [] labels_list = [] preds_list = [] print('[Tester] [Demo] Gathering images and inferring...') self.model.eval() with torch.no_grad(): for batched in self.valid_loader: images, labels = batched images_np = images.numpy().transpose(0, 2, 3, 1) labels_np = labels.numpy() images, labels = images.to(self.device), labels.to(self.device) preds = self.model.tta(images, net_type='deeplab') preds = preds.argmax(dim=1) preds_np = preds.detach().cpu().numpy() images_list.append(images_np) labels_list.append(labels_np) preds_list.append(preds_np) if len(images_list) == 4: break print('[Tester] [Demo] Processing results...') images = np.concatenate(images_list) labels = np.concatenate(labels_list) preds = np.concatenate(preds_list) # Ignore index ignore_pixel = labels == 255 preds[ignore_pixel] = 0 labels[ignore_pixel] = 0 # Plot fig, axes = plt.subplots(4, 3, figsize=(12, 10)) plt.tight_layout() axes[0, 0].set_title('input image') axes[0, 1].set_title('prediction') axes[0, 2].set_title('ground truth') for ax, img, lbl, pred in zip(axes, images, labels, preds): ax[0].imshow( minmax_normalize(img, norm_range=(0, 1), orig_range=(-1, 1))) ax[1].imshow(pred) ax[2].imshow(lbl) ax[0].set_xticks([]) ax[0].set_yticks([]) ax[1].set_xticks([]) ax[1].set_yticks([]) ax[2].set_xticks([]) ax[2].set_yticks([]) plt.savefig('eval.png') plt.show() plt.close() def infer_image_by_path( self, image_path='/home/ubuntu/data/Segmentation/pytorch-segmentation/test1.jpg', output_name='single_test_output', display=False): """ Opens image from fs and passes it through the loaded network, then displays and saves the result. :param output_name: Output image name :param display: Display images in windows or not :param image_path: Path of input images :return: null """ if not self.dataset == 'deepglobe': print( '[ERROR] Inference script only available for the Deepglobe dataset.' ) exit(-1) print('[Tester] [Single test] Opening image ' + image_path + '...') # Open and prepare image input_img = Image.open(image_path) if display: input_img.show() custom_img = np.array(input_img) custom_img = minmax_normalize(custom_img, norm_range=(-1, 1)) custom_img = custom_img.transpose(2, 0, 1) custom_img = torch.FloatTensor([custom_img]) print('[Tester] [Single test] Inferring image...') self.model.eval().to(self.device) with torch.no_grad(): # Send to GPU, infer and collect custom_img = custom_img.to(self.device) #preds = self.model.tta(custom_img, net_type='deeplab') preds = self.model.tta(custom_img, net_type='unet') preds = preds.argmax(dim=1) preds_np = preds.detach().cpu().numpy() print('[Tester] [Single test] Processing result...') good_preds = preds_np[0] good_mask = Image.fromarray(good_preds.astype('uint8'), 'P') # Transform mask to set good indexes and palette good_mask = DeepGlobeDataset.index_to_palette(good_mask) if display: good_mask.show() good_mask.save(output_name + '_prediction.png') overlay = Tester.make_overlay(good_mask, input_img, 100) if display: overlay.show() overlay.save(output_name + '_overlay.png') print('[Tester] [Single test] Done.') def infer_image_by_name(self, image_name='255876', output_name='single_test_output', display=True): """ Opens image from fs and passes it through the loaded network, then displays and saves the result. :param output_name: Output image name :param display: Display images in windows or not :param image_path: Path of input images :return: null """ if not self.dataset == 'deepglobe': print( '[ERROR] Inference script only available for the Deepglobe dataset.' ) exit(-1) print('[Tester] [Single test] Opening image ' + image_name + '...') # Open and prepare image input_img = Image.open( '/home/ubuntu/data/Segmentation/pytorch-segmentation/data/deepglobe_as_pascalvoc/VOCdevkit/VOC2012/JPEGImages/' + image_name + '.jpg') label = Image.open( '/home/ubuntu/data/Segmentation/pytorch-segmentation/data/deepglobe_as_pascalvoc/VOCdevkit/VOC2012/SegmentationClass/' + image_name + '.png') label_raw = copy.deepcopy(label) overlay_ground_truth = Tester.make_overlay(label_raw, input_img, 100) label = label.convert('P', palette=Image.WEB) if display: input_img.show(title='Input raw image') label.show(title='Ground truth') overlay_ground_truth.show(title='Overlay_ground_truth') custom_img = np.array(input_img) custom_img = minmax_normalize(custom_img, norm_range=(-1, 1)) custom_img = custom_img.transpose(2, 0, 1) custom_img = torch.FloatTensor([custom_img]) print('[Tester] [Single test] Inferring image...') self.model.eval() with torch.no_grad(): # Send to GPU, infer and collect custom_img = custom_img.to(self.device) preds = self.model.tta(custom_img, net_type='deeplab') preds = preds.argmax(dim=1) preds_np = preds.detach().cpu().numpy() print('[Tester] [Single test] Processing result...') good_preds = preds_np[0] good_mask = Image.fromarray(good_preds.astype('uint8'), 'P') # Transform mask to set good indexes and palette good_mask = DeepGlobeDataset.index_to_palette(good_mask) overlay = Tester.make_overlay(good_mask, input_img, 100) if display: good_mask.show(title='Prediction') overlay.show(title='Overlay') good_mask.save(output_name + '_prediction.png') overlay.save(output_name + '_overlay.png') overlay_ground_truth.save(output_name + '_overlay_truth.png') print('[Tester] [Single test] Done.') @staticmethod def make_overlay(pred_in, img_in, transparency): """ Build PIL image from input img and mask overlay with given transparency. :param pred_in: mask input :param img_in: img input :param transparency: transparency wanted between 0..255 :return: PIL image result """ pred = copy.deepcopy(pred_in) img = copy.deepcopy(img_in) print('[Tester] [Overlay] Building overlay...') if transparency < 0 or transparency > 255: print('ERROR : Transparency should be in range 0..255.') exit(-1) # Make preds semi_transparent pred = pred.convert('RGBA') data = pred.getdata() # you'll get a list of tuples new_data = [] for a in data: a = a[:3] # you'll get your tuple shorten to RGB a = a + ( transparency, ) # change the 100 to any transparency number you like between (0,255) new_data.append(a) pred.putdata(new_data) # you'll get your new img ready # Paste translucid preds on input image img.paste(pred, (0, 0), pred) print('[Tester] [Overlay] Done.') return img
#img = np.ascontiguousarray(frame) #img = np.ascontiguousarray(np.flip(frame, 2)) #img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) #img = np.array(img) #cv2.imshow('img', img) img = minmax_normalize(img, norm_range=(-1, 1)) img = img.transpose(2, 0, 1) # OpenCV (256, 256, 3) -> PyTorch (3, 256, 256) img = [img] # One sample in a batch image = torch.FloatTensor(img) #image = torch.Tensor(img) #print("CV Mat", image.shape, image) image = image.to(device) prev = datetime.datetime.now() # prediction pred = model.tta(image, net_type='deeplab') #print("pred shape", pred.shape) # torch sieze pred = pred.argmax(dim=1) #print("pred shape", pred.shape) # torch sieze pred_np = pred.detach().cpu().numpy() cur = datetime.datetime.now() cv2.imshow('frame', frame) #print("pred unique", np.unique(pred_np)) #print("pred", pred_np.shape, pred) #print(palette[pred_np[0]]) pred_lbl = np.array(palette[pred_np[0]], np.uint8) #print("pred_lbl", pred_lbl.shape, pred_lbl) cv2.imshow("pred", pred_lbl) #print("frame", frame.shape, "pred_lbl", pred_lbl.shape) blend = np.bitwise_or(frame, pred_lbl)
def eval_from_model(split, output_channels, model_path, postproc=False, vis=True, debug=True, mean_AP=False): model_path = Path(model_path) path, model_dir = os.path.split( model_path.parent) # separate path and filename device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') #work on GPU if available print(f'Device: {device}') if 'mnv2' in model_dir: model = SPPNet(enc_type='mobilenetv2', dec_type='maspp', output_channels=output_channels).to(device) defects = True else: model = SPPNet(output_channels=output_channels).to(device) defects = False if device == torch.device('cpu'): param = torch.load(model_path, map_location='cpu' ) # parameters saved in checkpoint via model_path else: param = torch.load( model_path) # parameters saved in checkpoint via model_path print(f'Parameters loaded from {model_path}') model.load_state_dict(param) #apply method load_state_dict to model? del param # delete parameters? Reduce memory usage? dataset = SherbrookeDataset( split=split, net_type='deeplab', defects=defects) #reach cityscapes dataset, validation split classes = np.arange(1, dataset.n_classes) img_paths = dataset.img_paths base_dir = dataset.base_dir split = dataset.split if len(img_paths) == 0: raise ValueError('Your dataset seems empty...') else: print(f'{len(img_paths)} images found in {base_dir}\\{split}') model.eval() #apply eval method on model. ? #print(f'Files containing \'{filetype}\' will be converted to \'{colortype}\' colormap and saved to:\n{output_folder}') valid_ious = [] count = 0 predicted_boxes = {} ground_truth_boxes = {} with torch.no_grad(): #dataloader is a 2 element list with images and labels as torch tensors print('Generating predictions...') with tqdm(range(len(dataset))) as _tqdm: for i in _tqdm: count += 1 if count % 1 == 10: print(f'Evaluation progress: {count}/{len(img_paths)}') image, label = dataset[i] img_path = dataset.img_paths[i] orig_image = np.array(Image.open(img_path)) filename = img_path.name #if isinstance(image, tuple): #take only image in label is also returned by __getitem__ # image = image[0] image = image[ None] # mimick dataloader with 4th channel (batch channel) image = image.to(device) # next line reaches to tta.py --> net.py --> xception.py ... # output: predictions (segmentation maps) pred = model.tta(image, net_type='deeplab') # pred = model(image) # pred = F.interpolate(pred, size=label.shape, mode='bilinear', align_corners=True) # take first pred of single item list of preds... pred = pred[0] softmax = torch.nn.Softmax(dim=1) pred = softmax(pred) #pred = softmax_from_feat_map(pred) pred = pred.detach().cpu().numpy() label = label.numpy() if pred.shape[1] / pred.shape[0] == 2: pred, label = dataset.postprocess(pred, label) if mean_AP and not postproc: raise Exception( 'postproc argument in eval_from_model function must be true if mean_AP is set to True' ) elif postproc: # take channel corresponding to softmax scores in channel 1 (class 1). Reduces array to 2D pred = pred[1, :, :] if dataset.defects: # set all pixel in pred corresponding to an ignore_pixel in label to 0 pred[label == dataset.ignore_index] = 0 if mean_AP: val_at_perc = 0.0002 # print( # f'Value at median in prediction is: {val_at_perc}') #create array copy and wreplace all values under threshold by nan values pred_masked = np.where(pred >= val_at_perc, pred, np.nan) #create copy of pred array and set all values above threshold to 1 and under to 0 pred_binary = threshold(pred.copy(), value=val_at_perc) # set values under 0.5 to 0, else to 1. result: binary array bbox_list, scores_list = contour_proc( pred_binary, pred_masked) # add key to predicted_boxes: {'filename': {'boxes':bbox_list, 'scores':scores_list}} predicted_boxes.update({ filename: { "boxes": bbox_list, "scores": scores_list } }) # pred = filter_by_activation(pred, percentile=90) # pred = threshold(pred) bbox_list_lbl, _ = contour_proc(label, label.copy()) # add key to predicted_boxes: {'filename': {'boxes':bbox_list, 'scores':scores_list}} ground_truth_boxes.update({filename: bbox_list_lbl}) pred_masked = np.where(pred >= val_at_perc, pred, np.nan) pred_binary = threshold( pred.copy(), value=val_at_perc ) # set values under 0.5 to 0, else to 1. result: binary array bbox_list, scores_list = contour_proc( pred_binary, pred_masked) #add key to predicted_boxes: {'filename': {'boxes':bbox_list, 'scores':scores_list}} predicted_boxes.update({ filename: { "boxes": bbox_list, "scores": scores_list } }) pred = filter_by_activation(pred, percentile=90) else: pred = np.argmax(pred, axis=0) if debug: print(f'Label unique values: {np.unique(label)}') # print(np.unique(pred)) if output_channels == 19: # create mask for values other than 0 (background) and 1(sidewalk) for i in range(2, 19): pred[ pred == i] = 0 # convert these classes to background value if dataset.split == 'val': # compute iou iou = compute_iou_batch(pred, label, classes) print(f'Iou for {filename}: {iou}') valid_ious.append(iou) if vis: output_dir = Path( f'../data/output/{model_dir}/{split}/{os.path.split(img_path.parent)[1]}' ) output_dir.mkdir(parents=True, exist_ok=True) folder = output_dir.joinpath('figures') folder.mkdir(parents=True, exist_ok=True) label[label == 255] = 0 conf_overlay = np.add(label, pred * 2) print(np.unique(conf_overlay)) confus_overlay = vis_segmentation(conf_overlay, img_path) confus_overlay.save( folder.joinpath(f'{filename}_overlay.jpg')) elif dataset.split == 'bootstrap': # convert 1 values to 8. For bootstrapping. pred = encode_mask(pred) pred_pil = Image.fromarray(pred.astype(np.uint8)) img_pil = Image.open(img_path) if pred_pil.size != img_pil.size: pred_pil = pred_pil.resize( (img_pil.size[0], img_pil.size[1]), Image.NEAREST) pred_pil.save( output_dir.joinpath(f'{filename}_gtFine_labelIds.png')) #save_colormap(pred[0], savename, output_dir, filetype, colortype=colortype) else: raise NotImplementedError _tqdm.set_postfix(OrderedDict(last_image=f'{filename}')) if mean_AP: with open('predicted_boxes_GSV.json', 'w') as json_file: json.dump(predicted_boxes, json_file, sort_keys=True) with open('ground_truth_boxes_GSV.json', 'w') as json_file: json.dump(ground_truth_boxes, json_file, sort_keys=True) if dataset.split == 'val': valid_iou = np.nanmean(valid_ious) print(f'mean valid iou: {valid_iou}') #print(f'Confusion matrix: \n{conf_mat}') with open('predicted_boxes_GSV.json', 'w') as json_file: json.dump(predicted_boxes, json_file) # , sort_keys=True) with open('ground_truth_boxes_GSV.json', 'w') as json_file: json.dump(ground_truth_boxes, json_file, sort_keys=True) if vis: print(f'Files were be saved to {output_dir.parent}')