test_loader = torch.utils.data.DataLoader( testset, batch_size=opt.testepisodeSize, shuffle=True, num_workers=int(opt.workers), drop_last=True, pin_memory=True ) print(opt) print(opt, file=F_txt) # ========================================== Model config =============================================== ngpu = int(opt.ngpu) global best_prec1, episode_train_index, best_prec2 best_prec1 = 0 best_prec2 = 0 episode_train_index = 0 model = Net.define_Net(which_model=opt.basemodel, num_classes=opt.way_num, norm='batch', init_type='normal', use_gpu=opt.cuda) global temprature_inc_rate, temprature_init,temprature temprature_init = 1 # init temprature as 1 increase every 50000 iter temprature_inc_rate = 30000 temprature = 1 # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda() optimizer = optim.Adam(model.parameters(), lr=opt.lr, betas=(opt.beta1, 0.9)) # optionally resume from a checkpoint if opt.resume: if os.path.isfile(opt.resume): print("=> loading checkpoint '{}'".format(opt.resume)) checkpoint = torch.load(opt.resume) episode_train_index = checkpoint['episode_train_index']+1
# save the opt and results to a txt file txt_save_path = os.path.join(opt.outf, 'Test_resutls.txt') F_txt = open(txt_save_path, 'a+') print(opt) print(opt, file=F_txt) # ========================================== Model Config =============================================== ngpu = int(opt.ngpu) global best_prec1, epoch_index best_prec1 = 0 epoch_index = 0 model = Net.define_Net(which_model=opt.basemodel, metric=opt.metric, num_classes=opt.way_num, neighbor_k=opt.neighbor_k, norm='batch', init_type='normal', use_gpu=opt.cuda, semi_neighbor_k=opt.semi_neighbor_k) # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda() optimizer = optim.Adam(model.parameters(), lr=opt.lr, betas=(opt.beta1, 0.9)) # optionally resume from a checkpoint if opt.resume: if os.path.isfile(opt.resume): print("=> loading checkpoint '{}'".format(opt.resume)) checkpoint = torch.load(opt.resume) epoch_index = checkpoint['epoch_index'] best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer'])