コード例 #1
0
ファイル: combine_irla_others.py プロジェクト: s2t2/unsup_vvs
def get_resnet18_inst_and_depth(which_encode_to_depth=9,
                                depth_dataset_list=['pbrnet', 'scenenet']):
    ret_cfg = {
        "BATCH_SIZE": 8,
        "QUEUE_CAP": 2560,
        "network_list": ["encode", "up_projection", "depth", "category"],
        "imagenet_order": ["encode", "category"]
    }
    for depth_dataset in depth_dataset_list:
        order_name = '%s_order' % depth_dataset
        ret_cfg[order_name] = ["encode", "up_projection", "depth"]

    # Add encode
    ret_cfg["encode"] = shared_funcs.get_encode_resnet(
        func_kwargs={'num_layers': [2, 2, 2, 2]})
    num_layers_enc = len(ret_cfg["encode"].keys())
    ret_cfg["encode_depth"] = num_layers_enc

    # Add category here
    ret_cfg["category"] = shared_funcs.get_category(
        128, "encode_%i" % num_layers_enc)
    ret_cfg["category_depth"] = 2

    if which_encode_to_depth == 9:
        ret_cfg = other_tasks.add_depth_head(
            ret_cfg, 'encode_%i' % which_encode_to_depth)
    elif which_encode_to_depth == 7:
        ret_cfg = other_tasks.add_depth_head(ret_cfg,
                                             'encode_%i' %
                                             which_encode_to_depth,
                                             first_upproj_filter=128,
                                             no_upproj_layers=3)
    else:
        raise NotImplementedError()
    return ret_cfg
コード例 #2
0
ファイル: combine_irla_others.py プロジェクト: s2t2/unsup_vvs
def get_resnet_18_fx_encdX(no_layers_fixed=3):
    ret_cfg = {
        "BATCH_SIZE": 8,
        "QUEUE_CAP": 2560,
        "network_list": ["inst_encode", "inst_category"],
        "imagenet_order": ["inst_encode", "inst_category"],
    }

    # Add inst_encode here
    ret_cfg["inst_encode"] = shared_funcs.get_encode_resnet(
        func_kwargs={'num_layers': [2, 2, 2, 2]})
    num_layers_enc = len(ret_cfg["inst_encode"].keys())
    ret_cfg["inst_encode_depth"] = num_layers_enc

    # Add inst_category here
    ret_cfg["inst_category"] = shared_funcs.get_category(
        128, "inst_encode_%i" % num_layers_enc)
    ret_cfg["inst_category_depth"] = 2

    assert no_layers_fixed >= 1
    ret_cfg["inst_encode"][1]["conv"]["trainable"] = 0
    ret_cfg["inst_encode"][1]["conv"]["bn_trainable"] = 0
    for idx_layer in range(2, no_layers_fixed + 1):
        ret_cfg["inst_encode"][idx_layer]["ResBlock_trainable"] = 0
        ret_cfg["inst_encode"][idx_layer]["ResBlock_bn_trainable"] = 0
    return ret_cfg
コード例 #3
0
ファイル: combine_irla_others.py プロジェクト: s2t2/unsup_vvs
def get_rp_inst_resnet_18(dataset_prefix='rp_imagenet', rp_layer_offset=0):
    ret_cfg = {
        "BATCH_SIZE": 8,
        "QUEUE_CAP": 2560,
        "network_list": ["encode", "encode_head", "rp_category", "category"],
        "%s_order" % dataset_prefix: ["encode", "encode_head"],
        "imagenet_order": ["encode", "category"],
    }

    # Add encode
    ret_cfg["encode"] = shared_funcs.get_encode_resnet(
        func_kwargs={'num_layers': [2, 2, 2, 2]})
    num_layers_enc = len(ret_cfg["encode"].keys())
    ret_cfg["encode_depth"] = num_layers_enc

    # Add encode_head
    ret_cfg["encode_head"] = other_tasks.get_rp_resnet_18_encode_head(
        "encode_%i" % (num_layers_enc - rp_layer_offset))
    ret_cfg["encode_head_depth"] = 2

    # Add rp_category
    ret_cfg["rp_category"] = other_tasks.get_rp_resnet_18_rp_category()
    ret_cfg["rp_category_depth"] = 4

    # Add category here
    ret_cfg["category"] = shared_funcs.get_category(
        128, "encode_%i" % num_layers_enc)
    ret_cfg["category_depth"] = 2
    return ret_cfg
コード例 #4
0
def get_cpc_resnet_18(dataset_prefix='imagenet'):
    ret_cfg = {
        "BATCH_SIZE": 8,
        "QUEUE_CAP": 2560,
        "network_list": ["encode"],
        "%s_order" % dataset_prefix: ["encode"],
    }

    # Add encode
    ret_cfg["encode"] = shared_funcs.get_encode_resnet(
        func_kwargs={'num_layers': [2, 2, 2, 2]})
    num_layers_enc = len(ret_cfg["encode"].keys())
    ret_cfg["encode_depth"] = num_layers_enc
    ret_cfg["encode"]["as_output"] = 1
    return ret_cfg
コード例 #5
0
ファイル: combine_irla_others.py プロジェクト: s2t2/unsup_vvs
def get_resnet_18_fx_encd1():
    ret_cfg = {
        "BATCH_SIZE": 8,
        "QUEUE_CAP": 2560,
        "network_list": ["inst_encode", "inst_category"],
        "imagenet_order": ["inst_encode", "inst_category"],
    }

    # Add inst_encode here
    ret_cfg["inst_encode"] = shared_funcs.get_encode_resnet(
        func_kwargs={'num_layers': [2, 2, 2, 2]})
    num_layers_enc = len(ret_cfg["inst_encode"].keys())
    ret_cfg["inst_encode_depth"] = num_layers_enc

    # Add inst_category here
    ret_cfg["inst_category"] = shared_funcs.get_category(
        128, "inst_encode_%i" % num_layers_enc)
    ret_cfg["inst_category_depth"] = 2

    ret_cfg["inst_encode"][1]["conv"]["trainable"] = 0
    return ret_cfg
コード例 #6
0
def get_rp_resnet_18_bg(dataset_prefix='rp_imagenet'):
    ret_cfg = {
        "BATCH_SIZE": 8,
        "QUEUE_CAP": 2560,
        "network_list": ["encode", "encode_head", "rp_category"],
        "%s_order" % dataset_prefix: ["encode", "encode_head"],
    }

    # Add encode
    ret_cfg["encode"] = shared_funcs.get_encode_resnet(
        func_kwargs={'num_layers': [2, 2, 2, 2]})
    num_layers_enc = len(ret_cfg["encode"].keys())
    ret_cfg["encode_depth"] = num_layers_enc

    # Add encode_head
    ret_cfg["encode_head"] = get_rp_resnet_18_encode_head_bg("encode_%i" %
                                                             num_layers_enc)
    ret_cfg["encode_head_depth"] = 2

    # Add rp_category
    ret_cfg["rp_category"] = get_rp_resnet_18_rp_category_bg()
    ret_cfg["rp_category_depth"] = 4
    return ret_cfg
コード例 #7
0
def get_ae_resnet_18(dataset_prefix='imagenet', head_dim=128):
    ret_cfg = {
        "BATCH_SIZE":
        8,
        "QUEUE_CAP":
        2560,
        "network_list": ["encode", "ae_head", "ae_decode", "ae_output"],
        "%s_order" % dataset_prefix:
        ["encode", "ae_head", "ae_decode", "ae_output"],
    }

    # Add encode
    ret_cfg["encode"] = shared_funcs.get_encode_resnet(
        func_kwargs={'num_layers': [2, 2, 2, 2]})
    num_layers_enc = len(ret_cfg["encode"].keys())
    ret_cfg["encode_depth"] = num_layers_enc

    ret_cfg["ae_head"] = {
        "input": "encode_%i" % num_layers_enc,
        1: {
            "ae_head": {
                "dimension": head_dim
            }
        },
    }
    ret_cfg["ae_head_depth"] = 1

    ae_decode = {"input": "ae_head_1"}
    for idx in range(1, num_layers_enc):
        curr_encode = ret_cfg["encode"][num_layers_enc + 1 - idx]
        curr_resblock = copy.deepcopy(curr_encode["ResBlock"])
        curr_resblock = list(reversed(curr_resblock))
        for each_conv in curr_resblock:
            each_conv["upsample"] = each_conv["stride"]
        curr_decode = {"ResBlock": curr_resblock}
        ae_decode[idx] = curr_decode
    ret_cfg["ae_decode"] = ae_decode
    ret_cfg["ae_decode_depth"] = num_layers_enc - 1

    ret_cfg["ae_output"] = {
        "input": "ae_decode_%i" % (num_layers_enc - 1),
        "as_output": 1,
        1: {
            "conv": {
                "filter_size": 3,
                "stride": 2,
                "num_filters": 3,
                "upsample": 2
            }
        },
        2: {
            "conv": {
                "filter_size": 7,
                "stride": 2,
                "num_filters": 3,
                "output": 1,
                "upsample": 2
            }
        },
    }
    ret_cfg["ae_output_depth"] = 2
    return ret_cfg