コード例 #1
0
def loss(dec_output, gold_rnn_output, lengths):
    rnn_output = decoder.rnn_output(dec_output)
    with tf.name_scope('optimization'):
        batch_size = tf.shape(lengths)[0]
        max_dec_len = tf.shape(rnn_output)[1]

        mask = tf.sequence_mask(lengths, dtype=tf.float32)

        i1, i2 = tf.meshgrid(tf.range(batch_size),
                             tf.range(max_dec_len),
                             indexing="ij")
        indices = tf.stack((tf.to_int64(i1), tf.to_int64(i2), gold_rnn_output),
                           axis=2)

        probs = tf.gather_nd(rnn_output, indices)
        probs = tf.where(tf.less_equal(probs, 0),
                         tf.ones_like(probs) * 1e-10, probs)

        crossent = -tf.log(probs)
        final_loss = tf.reduce_sum(crossent * mask) / tf.to_float(batch_size)

        tf.summary.scalar('original_loss', final_loss, ['extra'])

        extra_losses = tf.losses.get_losses()
        extra_losses = sum(extra_losses)

        final_loss = final_loss + extra_losses

    return final_loss
コード例 #2
0
def loss(dec_output, gold_rnn_output, lengths):
    rnn_output = decoder.rnn_output(dec_output)
    with tf.name_scope('optimization'):
        batch_size = tf.shape(lengths)
        mask = tf.sequence_mask(lengths, dtype=tf.float32)

        # [batch x max_len]
        final_loss = seq2seq.sequence_loss(rnn_output,
                                           gold_rnn_output,
                                           weights=mask,
                                           average_across_timesteps=False,
                                           average_across_batch=False)

        final_loss = tf.reduce_sum(final_loss, axis=1)
        op = tf.assert_equal(tf.shape(final_loss), batch_size)
        with tf.control_dependencies([op]):
            final_loss = tf.reduce_mean(final_loss)

    return final_loss