def train_net(cfg): # Enable the inbuilt cudnn auto-tuner to find the best algorithm to use torch.backends.cudnn.benchmark = True # Set up data augmentation IMG_SIZE = cfg.CONST.IMG_H, cfg.CONST.IMG_W CROP_SIZE = cfg.CONST.CROP_IMG_H, cfg.CONST.CROP_IMG_W train_transforms = utils.data_transforms.Compose([ utils.data_transforms.RandomCrop(IMG_SIZE, CROP_SIZE), utils.data_transforms.RandomBackground( cfg.TRAIN.RANDOM_BG_COLOR_RANGE), utils.data_transforms.ColorJitter(cfg.TRAIN.BRIGHTNESS, cfg.TRAIN.CONTRAST, cfg.TRAIN.SATURATION), utils.data_transforms.RandomNoise(cfg.TRAIN.NOISE_STD), utils.data_transforms.Normalize(mean=cfg.DATASET.MEAN, std=cfg.DATASET.STD), utils.data_transforms.RandomFlip(), utils.data_transforms.RandomPermuteRGB(), utils.data_transforms.ToTensor(), ]) val_transforms = utils.data_transforms.Compose([ utils.data_transforms.CenterCrop(IMG_SIZE, CROP_SIZE), utils.data_transforms.RandomBackground(cfg.TEST.RANDOM_BG_COLOR_RANGE), utils.data_transforms.Normalize(mean=cfg.DATASET.MEAN, std=cfg.DATASET.STD), utils.data_transforms.ToTensor(), ]) # Set up data loader train_dataset_loader = utils.data_loaders.DATASET_LOADER_MAPPING[ cfg.DATASET.TRAIN_DATASET](cfg) val_dataset_loader = utils.data_loaders.DATASET_LOADER_MAPPING[ cfg.DATASET.TEST_DATASET](cfg) train_data_loader = torch.utils.data.DataLoader( dataset=train_dataset_loader.get_dataset( utils.data_loaders.DatasetType.TRAIN, cfg.CONST.N_VIEWS_RENDERING, train_transforms), batch_size=cfg.CONST.BATCH_SIZE, num_workers=cfg.TRAIN.NUM_WORKER, pin_memory=True, shuffle=True, drop_last=True) val_data_loader = torch.utils.data.DataLoader( dataset=val_dataset_loader.get_dataset( utils.data_loaders.DatasetType.VAL, cfg.CONST.N_VIEWS_RENDERING, val_transforms), batch_size=1, num_workers=1, pin_memory=True, shuffle=False) # Set up networks encoder = Encoder(cfg) decoder = Decoder(cfg) refiner = Refiner(cfg) merger = Merger(cfg) print('[DEBUG] %s Parameters in Encoder: %d.' % (dt.now(), utils.network_utils.count_parameters(encoder))) print('[DEBUG] %s Parameters in Decoder: %d.' % (dt.now(), utils.network_utils.count_parameters(decoder))) print('[DEBUG] %s Parameters in Refiner: %d.' % (dt.now(), utils.network_utils.count_parameters(refiner))) print('[DEBUG] %s Parameters in Merger: %d.' % (dt.now(), utils.network_utils.count_parameters(merger))) # Initialize weights of networks encoder.apply(utils.network_utils.init_weights) decoder.apply(utils.network_utils.init_weights) refiner.apply(utils.network_utils.init_weights) merger.apply(utils.network_utils.init_weights) # Set up solver if cfg.TRAIN.POLICY == 'adam': encoder_solver = torch.optim.Adam(filter(lambda p: p.requires_grad, encoder.parameters()), lr=cfg.TRAIN.ENCODER_LEARNING_RATE, betas=cfg.TRAIN.BETAS) decoder_solver = torch.optim.Adam(decoder.parameters(), lr=cfg.TRAIN.DECODER_LEARNING_RATE, betas=cfg.TRAIN.BETAS) refiner_solver = torch.optim.Adam(refiner.parameters(), lr=cfg.TRAIN.REFINER_LEARNING_RATE, betas=cfg.TRAIN.BETAS) merger_solver = torch.optim.Adam(merger.parameters(), lr=cfg.TRAIN.MERGER_LEARNING_RATE, betas=cfg.TRAIN.BETAS) elif cfg.TRAIN.POLICY == 'sgd': encoder_solver = torch.optim.SGD(filter(lambda p: p.requires_grad, encoder.parameters()), lr=cfg.TRAIN.ENCODER_LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM) decoder_solver = torch.optim.SGD(decoder.parameters(), lr=cfg.TRAIN.DECODER_LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM) refiner_solver = torch.optim.SGD(refiner.parameters(), lr=cfg.TRAIN.REFINER_LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM) merger_solver = torch.optim.SGD(merger.parameters(), lr=cfg.TRAIN.MERGER_LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM) else: raise Exception('[FATAL] %s Unknown optimizer %s.' % (dt.now(), cfg.TRAIN.POLICY)) # Set up learning rate scheduler to decay learning rates dynamically encoder_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( encoder_solver, milestones=cfg.TRAIN.ENCODER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA) decoder_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( decoder_solver, milestones=cfg.TRAIN.DECODER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA) refiner_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( refiner_solver, milestones=cfg.TRAIN.REFINER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA) merger_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( merger_solver, milestones=cfg.TRAIN.MERGER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA) if torch.cuda.is_available(): encoder = torch.nn.DataParallel(encoder).cuda() decoder = torch.nn.DataParallel(decoder).cuda() refiner = torch.nn.DataParallel(refiner).cuda() merger = torch.nn.DataParallel(merger).cuda() # Set up loss functions bce_loss = torch.nn.BCELoss() # Load pretrained model if exists init_epoch = 0 best_iou = -1 best_epoch = -1 if 'WEIGHTS' in cfg.CONST and cfg.TRAIN.RESUME_TRAIN: print('[INFO] %s Recovering from %s ...' % (dt.now(), cfg.CONST.WEIGHTS)) checkpoint = torch.load(cfg.CONST.WEIGHTS) init_epoch = checkpoint['epoch_idx'] best_iou = checkpoint['best_iou'] best_epoch = checkpoint['best_epoch'] encoder.load_state_dict(checkpoint['encoder_state_dict']) decoder.load_state_dict(checkpoint['decoder_state_dict']) if cfg.NETWORK.USE_REFINER: refiner.load_state_dict(checkpoint['refiner_state_dict']) if cfg.NETWORK.USE_MERGER: merger.load_state_dict(checkpoint['merger_state_dict']) print('[INFO] %s Recover complete. Current epoch #%d, Best IoU = %.4f at epoch #%d.' \ % (dt.now(), init_epoch, best_iou, best_epoch)) # Summary writer for TensorBoard output_dir = os.path.join(cfg.DIR.OUT_PATH, '%s', dt.now().isoformat()) log_dir = output_dir % 'logs' ckpt_dir = output_dir % 'checkpoints' train_writer = SummaryWriter(os.path.join(log_dir, 'train')) val_writer = SummaryWriter(os.path.join(log_dir, 'test')) # Training loop for epoch_idx in range(init_epoch, cfg.TRAIN.NUM_EPOCHES): # Tick / tock epoch_start_time = time() # Batch average meterics batch_time = utils.network_utils.AverageMeter() data_time = utils.network_utils.AverageMeter() encoder_losses = utils.network_utils.AverageMeter() refiner_losses = utils.network_utils.AverageMeter() # Adjust learning rate encoder_lr_scheduler.step() decoder_lr_scheduler.step() refiner_lr_scheduler.step() merger_lr_scheduler.step() # switch models to training mode encoder.train() decoder.train() merger.train() refiner.train() batch_end_time = time() n_batches = len(train_data_loader) for batch_idx, (taxonomy_names, sample_names, rendering_images, ground_truth_volumes) in enumerate(train_data_loader): # Measure data time data_time.update(time() - batch_end_time) # Get data from data loader rendering_images = utils.network_utils.var_or_cuda( rendering_images) ground_truth_volumes = utils.network_utils.var_or_cuda( ground_truth_volumes) # Train the encoder, decoder, refiner, and merger image_features = encoder(rendering_images) raw_features, generated_volumes = decoder(image_features) if cfg.NETWORK.USE_MERGER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_MERGER: generated_volumes = merger(raw_features, generated_volumes) else: generated_volumes = torch.mean(generated_volumes, dim=1) encoder_loss = bce_loss(generated_volumes, ground_truth_volumes) * 10 if cfg.NETWORK.USE_REFINER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_REFINER: generated_volumes = refiner(generated_volumes) refiner_loss = bce_loss(generated_volumes, ground_truth_volumes) * 10 else: refiner_loss = encoder_loss # Gradient decent encoder.zero_grad() decoder.zero_grad() refiner.zero_grad() merger.zero_grad() if cfg.NETWORK.USE_REFINER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_REFINER: encoder_loss.backward(retain_graph=True) refiner_loss.backward() else: encoder_loss.backward() encoder_solver.step() decoder_solver.step() refiner_solver.step() merger_solver.step() # Append loss to average metrics encoder_losses.update(encoder_loss.item()) refiner_losses.update(refiner_loss.item()) # Append loss to TensorBoard n_itr = epoch_idx * n_batches + batch_idx train_writer.add_scalar('EncoderDecoder/BatchLoss', encoder_loss.item(), n_itr) train_writer.add_scalar('Refiner/BatchLoss', refiner_loss.item(), n_itr) # Tick / tock batch_time.update(time() - batch_end_time) batch_end_time = time() print('[INFO] %s [Epoch %d/%d][Batch %d/%d] BatchTime = %.3f (s) DataTime = %.3f (s) EDLoss = %.4f RLoss = %.4f' % \ (dt.now(), epoch_idx + 1, cfg.TRAIN.NUM_EPOCHES, batch_idx + 1, n_batches, \ batch_time.val, data_time.val, encoder_loss.item(), refiner_loss.item())) # Append epoch loss to TensorBoard train_writer.add_scalar('EncoderDecoder/EpochLoss', encoder_losses.avg, epoch_idx + 1) train_writer.add_scalar('Refiner/EpochLoss', refiner_losses.avg, epoch_idx + 1) # Tick / tock epoch_end_time = time() print('[INFO] %s Epoch [%d/%d] EpochTime = %.3f (s) EDLoss = %.4f RLoss = %.4f' % (dt.now(), epoch_idx + 1, cfg.TRAIN.NUM_EPOCHES, epoch_end_time - epoch_start_time, \ encoder_losses.avg, refiner_losses.avg)) # Update Rendering Views if cfg.TRAIN.UPDATE_N_VIEWS_RENDERING: n_views_rendering = random.randint(1, cfg.CONST.N_VIEWS_RENDERING) train_data_loader.dataset.set_n_views_rendering(n_views_rendering) print('[INFO] %s Epoch [%d/%d] Update #RenderingViews to %d' % \ (dt.now(), epoch_idx + 2, cfg.TRAIN.NUM_EPOCHES, n_views_rendering)) # Validate the training models iou = test_net(cfg, epoch_idx + 1, output_dir, val_data_loader, val_writer, encoder, decoder, refiner, merger) # Save weights to file if (epoch_idx + 1) % cfg.TRAIN.SAVE_FREQ == 0: if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) utils.network_utils.save_checkpoints(cfg, \ os.path.join(ckpt_dir, 'ckpt-epoch-%04d.pth' % (epoch_idx + 1)), \ epoch_idx + 1, encoder, encoder_solver, decoder, decoder_solver, \ refiner, refiner_solver, merger, merger_solver, best_iou, best_epoch) if iou > best_iou: if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) best_iou = iou best_epoch = epoch_idx + 1 utils.network_utils.save_checkpoints(cfg, \ os.path.join(ckpt_dir, 'best-ckpt.pth'), \ epoch_idx + 1, encoder, encoder_solver, decoder, decoder_solver, \ refiner, refiner_solver, merger, merger_solver, best_iou, best_epoch) # Close SummaryWriter for TensorBoard train_writer.close() val_writer.close()
class Model(pl.LightningModule): def __init__(self, cfg_network: DictConfig, cfg_tester: DictConfig): super().__init__() self.cfg_network = cfg_network self.cfg_tester = cfg_tester # Enable the inbuilt cudnn auto-tuner to find the best algorithm to use torch.backends.cudnn.benchmark = True # Set up networks self.encoder = Encoder(cfg_network) self.decoder = Decoder(cfg_network) self.refiner = Refiner(cfg_network) self.merger = Merger(cfg_network) # Initialize weights of networks self.encoder.apply(utils.network_utils.init_weights) self.decoder.apply(utils.network_utils.init_weights) self.refiner.apply(utils.network_utils.init_weights) self.merger.apply(utils.network_utils.init_weights) self.bce_loss = nn.BCELoss() def configure_optimizers(self): params = self.cfg_network.optimization # Set up solver if params.policy == 'adam': encoder_solver = optim.Adam(filter(lambda p: p.requires_grad, self.encoder.parameters()), lr=params.encoder_lr, betas=params.betas) decoder_solver = optim.Adam(self.decoder.parameters(), lr=params.decoder_lr, betas=params.betas) refiner_solver = optim.Adam(self.refiner.parameters(), lr=params.refiner_lr, betas=params.betas) merger_solver = optim.Adam(self.merger.parameters(), lr=params.merger_lr, betas=params.betas) elif params.policy == 'sgd': encoder_solver = optim.SGD(filter(lambda p: p.requires_grad, self.encoder.parameters()), lr=params.encoder_lr, momentum=params.momentum) decoder_solver = optim.SGD(self.decoder.parameters(), lr=params.decoder_lr, momentum=params.momentum) refiner_solver = optim.SGD(self.refiner.parameters(), lr=params.refiner_lr, momentum=params.momentum) merger_solver = optim.SGD(self.merger.parameters(), lr=params.merger_lr, momentum=params.momentum) else: raise Exception('[FATAL] %s Unknown optimizer %s.' % (dt.now(), params.policy)) # Set up learning rate scheduler to decay learning rates dynamically encoder_lr_scheduler = optim.lr_scheduler.MultiStepLR(encoder_solver, milestones=params.encoder_lr_milestones, gamma=params.gamma) decoder_lr_scheduler = optim.lr_scheduler.MultiStepLR(decoder_solver, milestones=params.decoder_lr_milestones, gamma=params.gamma) refiner_lr_scheduler = optim.lr_scheduler.MultiStepLR(refiner_solver, milestones=params.refiner_lr_milestones, gamma=params.gamma) merger_lr_scheduler = optim.lr_scheduler.MultiStepLR(merger_solver, milestones=params.merger_lr_milestones, gamma=params.gamma) return [encoder_solver, decoder_solver, refiner_solver, merger_solver], \ [encoder_lr_scheduler, decoder_lr_scheduler, refiner_lr_scheduler, merger_lr_scheduler] def _fwd(self, batch): taxonomy_names, sample_names, rendering_images, ground_truth_volumes = batch image_features = self.encoder(rendering_images) raw_features, generated_volumes = self.decoder(image_features) if self.cfg_network.use_merger and self.current_epoch >= self.cfg_network.optimization.epoch_start_use_merger: generated_volumes = self.merger(raw_features, generated_volumes) else: generated_volumes = torch.mean(generated_volumes, dim=1) encoder_loss = self.bce_loss(generated_volumes, ground_truth_volumes) * 10 if self.cfg_network.use_refiner and self.current_epoch >= self.cfg_network.optimization.epoch_start_use_refiner: generated_volumes = self.refiner(generated_volumes) refiner_loss = self.bce_loss(generated_volumes, ground_truth_volumes) * 10 else: refiner_loss = encoder_loss return generated_volumes, encoder_loss, refiner_loss def training_step(self, batch, batch_idx, optimizer_idx): (opt_enc, opt_dec, opt_ref, opt_merg) = self.optimizers() generated_volumes, encoder_loss, refiner_loss = self._fwd(batch) self.log('loss/EncoderDecoder', encoder_loss, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log('loss/Refiner', refiner_loss, prog_bar=True, logger=True, on_step=True, on_epoch=True) if self.cfg_network.use_refiner and self.current_epoch >= self.cfg_network.optimization.epoch_start_use_refiner: self.manual_backward(encoder_loss, opt_enc, retain_graph=True) self.manual_backward(refiner_loss, opt_ref) else: self.manual_backward(encoder_loss, opt_enc) for opt in self.optimizers(): opt.step() opt.zero_grad() def training_epoch_end(self, outputs) -> None: # Update Rendering Views if self.cfg_network.update_n_views_rendering: n_views_rendering = self.trainer.datamodule.update_n_views_rendering() print('[INFO] %s Epoch [%d/%d] Update #RenderingViews to %d' % (dt.now(), self.current_epoch + 2, self.trainer.max_epochs, n_views_rendering)) def _eval_step(self, batch, batch_idx): # SUPPORTS ONLY BATCH_SIZE=1 taxonomy_names, sample_names, rendering_images, ground_truth_volumes = batch taxonomy_id = taxonomy_names[0] sample_name = sample_names[0] generated_volumes, encoder_loss, refiner_loss = self._fwd(batch) self.log('val_loss/EncoderDecoder', encoder_loss, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log('val_loss/Refiner', refiner_loss, prog_bar=True, logger=True, on_step=True, on_epoch=True) # IoU per sample sample_iou = [] for th in self.cfg_tester.voxel_thresh: _volume = torch.ge(generated_volumes, th).float() intersection = torch.sum(_volume.mul(ground_truth_volumes)).float() union = torch.sum( torch.ge(_volume.add(ground_truth_volumes), 1)).float() sample_iou.append((intersection / union).item()) # Print sample loss and IoU n_samples = -1 print('\n[INFO] %s Test[%d/%d] Taxonomy = %s Sample = %s EDLoss = %.4f RLoss = %.4f IoU = %s' % (dt.now(), batch_idx + 1, n_samples, taxonomy_id, sample_name, encoder_loss.item(), refiner_loss.item(), ['%.4f' % si for si in sample_iou])) return { 'taxonomy_id': taxonomy_id, 'sample_name': sample_name, 'sample_iou': sample_iou } def _eval_epoch_end(self, outputs): # Load taxonomies of dataset taxonomies = [] taxonomy_path = self.trainer.datamodule.get_test_taxonomy_file_path() with open(taxonomy_path, encoding='utf-8') as file: taxonomies = json.loads(file.read()) taxonomies = {t['taxonomy_id']: t for t in taxonomies} test_iou = {} for output in outputs: taxonomy_id, sample_name, sample_iou = output[ 'taxonomy_id'], output['sample_name'], output['sample_iou'] if taxonomy_id not in test_iou: test_iou[taxonomy_id] = {'n_samples': 0, 'iou': []} test_iou[taxonomy_id]['n_samples'] += 1 test_iou[taxonomy_id]['iou'].append(sample_iou) mean_iou = [] for taxonomy_id in test_iou: test_iou[taxonomy_id]['iou'] = torch.mean( torch.tensor(test_iou[taxonomy_id]['iou']), dim=0) mean_iou.append(test_iou[taxonomy_id]['iou'] * test_iou[taxonomy_id]['n_samples']) n_samples = len(outputs) mean_iou = torch.stack(mean_iou) mean_iou = torch.sum(mean_iou, dim=0) / n_samples # Print header print('============================ TEST RESULTS ============================') print('Taxonomy', end='\t') print('#Sample', end='\t') print(' Baseline', end='\t') for th in self.cfg_tester.voxel_thresh: print('t=%.2f' % th, end='\t') print() # Print body for taxonomy_id in test_iou: print('%s' % taxonomies[taxonomy_id] ['taxonomy_name'].ljust(8), end='\t') print('%d' % test_iou[taxonomy_id]['n_samples'], end='\t') if 'baseline' in taxonomies[taxonomy_id]: n_views_rendering = self.trainer.datamodule.get_n_views_rendering() print('%.4f' % taxonomies[taxonomy_id]['baseline'] ['%d-view' % n_views_rendering], end='\t\t') else: print('N/a', end='\t\t') for ti in test_iou[taxonomy_id]['iou']: print('%.4f' % ti, end='\t') print() # Print mean IoU for each threshold print('Overall ', end='\t\t\t\t') for mi in mean_iou: print('%.4f' % mi, end='\t') print('\n') max_iou = torch.max(mean_iou) self.log('Refiner/IoU', max_iou, prog_bar=True, on_epoch=True) def validation_step(self, batch, batch_idx): return self._eval_step(batch, batch_idx) def validation_epoch_end(self, outputs): self._eval_epoch_end(outputs) def test_step(self, batch, batch_idx): return self._eval_step(batch, batch_idx) def test_epoch_end(self, outputs): self._eval_epoch_end(outputs) def get_progress_bar_dict(self): # don't show the loss as it's None items = super().get_progress_bar_dict() items.pop("loss", None) return items