def create_tf_example(example): # TODO(user): Populate the following variables from your example. height = 144.0 # Image height width = 349.0 # Image width filename = "images2/gpl_37.jpeg" # Filename of the image. Empty if image is not from file # encoded_image_data = None # Encoded image bytes image_format = b'jpeg' # b'jpeg' or b'png' xmins = [50.0/349.0] # List of normalized left x coordinates in bounding box (1 per box) xmaxs = [99.0/349.0] # List of normalized right x coordinates in bounding box # (1 per box) ymins = [9.0/144.0] # List of normalized top y coordinates in bounding box (1 per box) ymaxs = [69.0/144.0] # List of normalized bottom y coordinates in bounding box # (1 per box) classes_text = ['gpl'] # List of string class name of bounding box (1 per box) classes = [1] # List of integer class id of bounding box (1 per box) tf_example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename), 'image/source_id': dataset_util.bytes_feature(filename), 'image/encoded': dataset_util.bytes_feature(encoded_image_data), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example
def create_tf_example(group, path): #print(os.path.join(path, '{}'.format(group.filename))) with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) width, height = image.size filename = group.filename.encode('utf8') image_format = b'jpg' xmins = [] xmaxs = [] ymins = [] ymaxs = [] classes_text = [] classes = [] for index, row in group.object.iterrows(): xmins.append(row['xmin'] / width) xmaxs.append(row['xmax'] / width) ymins.append(row['ymin'] / height) ymaxs.append(row['ymax'] / height) classes_text.append(row['class'].encode('utf8')) classes.append(class_text_to_int(row['class'])) tf_example = tf.train.Example(features=tf.train.Features( feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename), 'image/source_id': dataset_util.bytes_feature(filename), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example
def dict_to_tf_example(data, label_map_dict, image_subdirectory, value, ignore_difficult_instances=False): img_path = os.path.join(image_subdirectory, data['filename']) #This function will crete the tf example set with open(img_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = PIL.Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() width = int(data['size']['width']) height = int(data['size']['height']) xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] for obj in data['object']: difficult = bool(int(obj['difficult'])) if ignore_difficult_instances and difficult: continue difficult_obj.append(int(difficult)) xmin.append(float(obj['bndbox']['xmin']) / width) ymin.append(float(obj['bndbox']['ymin']) / height) xmax.append(float(obj['bndbox']['xmax']) / width) ymax.append(float(obj['bndbox']['ymax']) / height) class_name = get_class_name_from_filename(data['filename']) for each_class_name in class_name.split(" "): classes_text.append(each_class_name.encode('utf8')) classes.append(label_map_dict[each_class_name]) truncated.append(int(obj['truncated'])) poses.append(obj['pose'].encode('utf8')) example = tf.train.Example(features=tf.train.Features( feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(data['filename'].encode('utf8')), 'image/source_id': dataset_util.bytes_feature(data['filename'].encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.int64_list_feature(truncated), 'image/object/view': dataset_util.bytes_list_feature(poses), })) return example
def dict_to_tf_example(data, dataset_directory, label_map_dict, ignore_difficult_instances=False, image_subdirectory='JPEGImages'): """Convert XML derived dict to tf.Example proto. Notice that this function normalizes the bounding box coordinates provided by the raw data. Args: data: dict holding PASCAL XML fields for a single image (obtained by running dataset_util.recursive_parse_xml_to_dict) dataset_directory: Path to root directory holding PASCAL dataset label_map_dict: A map from string label names to integers ids. ignore_difficult_instances: Whether to skip difficult instances in the dataset (default: False). image_subdirectory: String specifying subdirectory within the PASCAL dataset directory holding the actual image data. Returns: example: The converted tf.Example. Raises: ValueError: if the image pointed to by data['filename'] is not a valid JPEG """ img_path = os.path.join(data['folder'], image_subdirectory, data['filename']) full_path = os.path.join(dataset_directory, img_path) with tf.gfile.GFile(full_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = PIL.Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() width = int(data['size']['width']) height = int(data['size']['height']) xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] if 'object' in data: for obj in data['object']: difficult = bool(int(obj['difficult'])) if ignore_difficult_instances and difficult: continue difficult_obj.append(int(difficult)) xmin.append(float(obj['bndbox']['xmin']) / width) ymin.append(float(obj['bndbox']['ymin']) / height) xmax.append(float(obj['bndbox']['xmax']) / width) ymax.append(float(obj['bndbox']['ymax']) / height) classes_text.append(obj['name'].encode('utf8')) classes.append(label_map_dict[obj['name']]) truncated.append(int(obj['truncated'])) poses.append(obj['pose'].encode('utf8')) example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/source_id': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.int64_list_feature(truncated), 'image/object/view': dataset_util.bytes_list_feature(poses) })) print(data['filename']) return example
def dict_to_tf_features(data, img_path, label_map_dict, ignore_difficult_instances=False): xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] examples = [] for image in data: if 'object' in data[image]: for obj in data[image]['object']: difficult = bool(int(obj['difficult'])) if ignore_difficult_instances and difficult: continue difficult_obj.append(int(difficult)) filename = data[image]['filename'] img_full_path = os.path.join(img_path, filename) with tf.io.gfile.GFile(img_full_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) img = Image.open(encoded_jpg_io) if img.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() width = int(data[image]['size']['width']) height = int(data[image]['size']['height']) xmin.append(float(obj['bndbox']['xmin']) / width) ymin.append(float(obj['bndbox']['ymin']) / height) xmax.append(float(obj['bndbox']['xmax']) / width) ymax.append(float(obj['bndbox']['ymax']) / height) classes_text.append(obj['name'].encode('utf8')) classes.append(label_map_dict[obj['name']]) truncated.append(int(obj['truncated'])) poses.append(obj['pose'].encode('utf8')) examples.append( tf.train.Example(features=tf.train.Features( feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename.encode('utf8')), 'image/source_id': dataset_util.bytes_feature(filename.encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.int64_list_feature(truncated), 'image/object/view': dataset_util.bytes_list_feature(poses), }))) print('Pascal VOC data loaded.') return examples
def create_example(xml_file, img_file): # process the xml file tree = ET.parse(xml_file) root = tree.getroot() image_name = root.find('filename').text file_name = image_name.encode('utf8') size = root.find('size') width = int(size[0].text) height = int(size[1].text) xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] for member in root.findall('object'): obj_class = member[0].text classes_text.append(obj_class.encode('utf8')) xmin.append(float(member[4][0].text) / width) ymin.append(float(member[4][1].text) / height) xmax.append(float(member[4][2].text) / width) ymax.append(float(member[4][3].text) / height) difficult_obj.append(0) classes.append(class_text_to_int( obj_class)) # i wrote 1 because i have only one class(person) truncated.append(0) poses.append('Unspecified'.encode('utf8')) # read corresponding image # full_path = os.path.join('./images', '{}'.format(image_name)) # provide the path of images directory with tf.gfile.GFile(img_file, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() # create TFRecord Example example = tf.train.Example(features=tf.train.Features( feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(file_name), 'image/source_id': dataset_util.bytes_feature(file_name), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.int64_list_feature(truncated), 'image/object/view': dataset_util.bytes_list_feature(poses), })) return example
def create_tf_example(labels, filename, annotations, debug=False): """ Based on: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md """ if debug: print(filename) width, height = getSize(filename) # Image width and height encoded_image_data = loadImage(filename) # Encoded image bytes if imghdr.what(filename) == 'png': image_format = b'png' # b'jpeg' or b'png' elif imghdr.what(filename) == 'jpeg': image_format = b'jpeg' else: raise RuntimeError("Only supports PNG or JPEG images") xmins = [ ] # List of normalized left x coordinates in bounding box (1 per box) xmaxs = [ ] # List of normalized right x coordinates in bounding box (1 per box) ymins = [ ] # List of normalized top y coordinates in bounding box (1 per box) ymaxs = [ ] # List of normalized bottom y coordinates in bounding box (1 per box) classes_text = [] # List of string class name of bounding box (1 per box) classes = [] # List of integer class id of bounding box (1 per box) for a in annotations: # Numeric and text class labels classes.append(mapLabel(labels, a['class'])) classes_text.append(a['class'].encode()) # Scaled min/maxes xmins.append(bounds(a['x'] / width)) ymins.append(bounds(a['y'] / height)) xmaxs.append(bounds((a['x'] + a['width']) / width)) ymaxs.append(bounds((a['y'] + a['height']) / height)) # We got errors: maximum box coordinate value is larger than 1.010000 valid = lambda x: x >= 0 and x <= 1 assert valid(xmins[-1]) and valid(ymins[-1]) and valid(xmaxs[-1]) and valid(ymaxs[-1]), \ "Invalid values for "+filename+": "+ \ str(xmins[-1])+","+str(ymins[-1])+","+str(xmaxs[-1])+","+str(ymaxs[-1]) tf_example = tf.train.Example(features=tf.train.Features( feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename.encode()), 'image/source_id': dataset_util.bytes_feature(filename.encode()), 'image/encoded': dataset_util.bytes_feature(encoded_image_data), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example
def dict_to_tf_example(data, mask_path, label_map_dict, image_subdirectory, ignore_difficult_instances=False, faces_only=True, mask_type='png'): """Convert XML derived dict to tf.Example proto. Notice that this function normalizes the bounding box coordinates provided by the raw data. Args: data: dict holding PASCAL XML fields for a single image (obtained by running dataset_util.recursive_parse_xml_to_dict) mask_path: String path to PNG encoded mask. label_map_dict: A map from string label names to integers ids. image_subdirectory: String specifying subdirectory within the Pascal dataset directory holding the actual image data. ignore_difficult_instances: Whether to skip difficult instances in the dataset (default: False). faces_only: If True, generates bounding boxes for pet faces. Otherwise generates bounding boxes (as well as segmentations for full pet bodies). mask_type: 'numerical' or 'png'. 'png' is recommended because it leads to smaller file sizes. Returns: example: The converted tf.Example. Raises: ValueError: if the image pointed to by data['filename'] is not a valid JPEG """ img_path = os.path.join(image_subdirectory, data['filename']) with tf.gfile.GFile(img_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = PIL.Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() with tf.gfile.GFile(mask_path, 'rb') as fid: encoded_mask_png = fid.read() encoded_png_io = io.BytesIO(encoded_mask_png) mask = PIL.Image.open(encoded_png_io) if mask.format != 'PNG': raise ValueError('Mask format not PNG') mask_np = np.asarray(mask) nonbackground_indices_x = np.any(mask_np != 2, axis=0) nonbackground_indices_y = np.any(mask_np != 2, axis=1) nonzero_x_indices = np.where(nonbackground_indices_x) nonzero_y_indices = np.where(nonbackground_indices_y) width = int(data['size']['width']) height = int(data['size']['height']) xmins = [] ymins = [] xmaxs = [] ymaxs = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] masks = [] for obj in data['object']: difficult = bool(int(obj['difficult'])) if ignore_difficult_instances and difficult: continue difficult_obj.append(int(difficult)) if faces_only: xmin = float(obj['bndbox']['xmin']) xmax = float(obj['bndbox']['xmax']) ymin = float(obj['bndbox']['ymin']) ymax = float(obj['bndbox']['ymax']) else: xmin = float(np.min(nonzero_x_indices)) xmax = float(np.max(nonzero_x_indices)) ymin = float(np.min(nonzero_y_indices)) ymax = float(np.max(nonzero_y_indices)) xmins.append(xmin / width) ymins.append(ymin / height) xmaxs.append(xmax / width) ymaxs.append(ymax / height) class_name = get_class_name_from_filename(data['filename']) classes_text.append(class_name.encode('utf8')) classes.append(label_map_dict[class_name]) truncated.append(int(obj['truncated'])) poses.append(obj['pose'].encode('utf8')) if not faces_only: mask_remapped = (mask_np != 2).astype(np.uint8) masks.append(mask_remapped) feature_dict = { 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(data['filename'].encode('utf8')), 'image/source_id': dataset_util.bytes_feature(data['filename'].encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.int64_list_feature(truncated), 'image/object/view': dataset_util.bytes_list_feature(poses), } if not faces_only: if mask_type == 'numerical': mask_stack = np.stack(masks).astype(np.float32) masks_flattened = np.reshape(mask_stack, [-1]) feature_dict['image/object/mask'] = ( dataset_util.float_list_feature(masks_flattened.tolist())) elif mask_type == 'png': encoded_mask_png_list = [] for mask in masks: img = PIL.Image.fromarray(mask) output = io.BytesIO() img.save(output, format='PNG') encoded_mask_png_list.append(output.getvalue()) feature_dict['image/object/mask'] = ( dataset_util.bytes_list_feature(encoded_mask_png_list)) example = tf.train.Example(features=tf.train.Features( feature=feature_dict)) return example
def create_tf_example(image, annotations_list, image_dir, category_index, include_masks=False): """Converts image and annotations to a tf.Example proto. Args: image: dict with keys: [u'license', u'file_name', u'coco_url', u'height', u'width', u'date_captured', u'flickr_url', u'id'] annotations_list: list of dicts with keys: [u'segmentation', u'area', u'iscrowd', u'image_id', u'bbox', u'category_id', u'id'] Notice that bounding box coordinates in the official COCO dataset are given as [x, y, width, height] tuples using absolute coordinates where x, y represent the top-left (0-indexed) corner. This function converts to the format expected by the Tensorflow Object Detection API (which is which is [ymin, xmin, ymax, xmax] with coordinates normalized relative to image size). image_dir: directory containing the image files. category_index: a dict containing COCO category information keyed by the 'id' field of each category. See the label_map_util.create_category_index function. include_masks: Whether to include instance segmentations masks (PNG encoded) in the result. default: False. Returns: example: The converted tf.Example num_annotations_skipped: Number of (invalid) annotations that were ignored. Raises: ValueError: if the image pointed to by data['filename'] is not a valid JPEG """ image_height = image['height'] image_width = image['width'] filename = image['file_name'] image_id = image['id'] full_path = os.path.join(image_dir, filename) with tf.gfile.GFile(full_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = PIL.Image.open(encoded_jpg_io) key = hashlib.sha256(encoded_jpg).hexdigest() xmin = [] xmax = [] ymin = [] ymax = [] is_crowd = [] category_names = [] category_ids = [] area = [] encoded_mask_png = [] num_annotations_skipped = 0 for object_annotations in annotations_list: (x, y, width, height) = tuple(object_annotations['bbox']) if width <= 0 or height <= 0: num_annotations_skipped += 1 continue if x + width > image_width or y + height > image_height: num_annotations_skipped += 1 continue xmin.append(float(x) / image_width) xmax.append(float(x + width) / image_width) ymin.append(float(y) / image_height) ymax.append(float(y + height) / image_height) is_crowd.append(object_annotations['iscrowd']) category_id = int(object_annotations['category_id']) category_ids.append(category_id) category_names.append( category_index[category_id]['name'].encode('utf8')) area.append(object_annotations['area']) if include_masks: run_len_encoding = mask.frPyObjects( object_annotations['segmentation'], image_height, image_width) binary_mask = mask.decode(run_len_encoding) if not object_annotations['iscrowd']: binary_mask = np.amax(binary_mask, axis=2) pil_image = PIL.Image.fromarray(binary_mask) output_io = io.BytesIO() pil_image.save(output_io, format='PNG') encoded_mask_png.append(output_io.getvalue()) feature_dict = { 'image/height': dataset_util.int64_feature(image_height), 'image/width': dataset_util.int64_feature(image_width), 'image/filename': dataset_util.bytes_feature(filename.encode('utf8')), 'image/source_id': dataset_util.bytes_feature(str(image_id).encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/label': dataset_util.int64_list_feature(category_ids), 'image/object/is_crowd': dataset_util.int64_list_feature(is_crowd), 'image/object/area': dataset_util.float_list_feature(area), } if include_masks: feature_dict['image/object/mask'] = ( dataset_util.bytes_list_feature(encoded_mask_png)) example = tf.train.Example(features=tf.train.Features( feature=feature_dict)) return key, example, num_annotations_skipped
def create_tf_example(labels, filename, annotations, debug=False): """ Based on: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md """ if debug: print(filename) # Skip RGBA images orig_width, orig_height, _, orig_mode = imgInfo(filename) if orig_mode == "RGBA": print("Warning: skipping", filename, "since RGBA") return filename = resize_image(filename) # Resize if too big new_width, new_height, imgformat, _ = imgInfo(filename) encoded_image_data = loadImage(filename) # Encoded image bytes if debug: print(filename, str(new_width)+"x"+str(new_height), imgformat) if imgformat == 'PNG': image_format = b'png' # b'jpeg' or b'png' elif imgformat == 'JPEG': image_format = b'jpeg' else: print("Warning: skipping", filename, "since only supports PNG or JPEG images") return # Calculate the annotations based on the original width/height since that's # what was annotated (i.e. before we resize) xmins = [] # List of normalized left x coordinates in bounding box (1 per box) xmaxs = [] # List of normalized right x coordinates in bounding box (1 per box) ymins = [] # List of normalized top y coordinates in bounding box (1 per box) ymaxs = [] # List of normalized bottom y coordinates in bounding box (1 per box) classes_text = [] # List of string class name of bounding box (1 per box) classes = [] # List of integer class id of bounding box (1 per box) for a in annotations: # Numeric and text class labels classes.append(mapLabel(labels, a['class'])) classes_text.append(a['class'].encode()) # Scaled min/maxes xmins.append(bounds(a['x']/orig_width)) ymins.append(bounds(a['y']/orig_height)) xmaxs.append(bounds((a['x']+a['width'])/orig_width)) ymaxs.append(bounds((a['y']+a['height'])/orig_height)) # We got errors: maximum box coordinate value is larger than 1.010000 valid = lambda x: x >= 0 and x <= 1 assert valid(xmins[-1]) and valid(ymins[-1]) and valid(xmaxs[-1]) and valid(ymaxs[-1]), \ "Invalid values for "+filename+": "+ \ str(xmins[-1])+","+str(ymins[-1])+","+str(xmaxs[-1])+","+str(ymaxs[-1]) tf_example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(new_height), 'image/width': dataset_util.int64_feature(new_width), 'image/filename': dataset_util.bytes_feature(filename.encode()), 'image/source_id': dataset_util.bytes_feature(filename.encode()), 'image/encoded': dataset_util.bytes_feature(encoded_image_data), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example