コード例 #1
0
def _make_detr(
    backbone_name: str,
    num_queries=100,
    mask=False,
    qa_dataset=None,
    predict_final=False,
    text_encoder="roberta-base",
    contrastive_align_loss=True,
):
    hidden_dim = 256
    backbone = _make_backbone(backbone_name, mask)
    transformer = Transformer(d_model=hidden_dim,
                              return_intermediate_dec=True,
                              text_encoder_type=text_encoder)
    detr = MDETR(
        backbone,
        transformer,
        num_classes=255,
        num_queries=num_queries,
        qa_dataset=qa_dataset,
        predict_final=predict_final,
        contrastive_align_loss=contrastive_align_loss,
        contrastive_hdim=64,
    )
    if mask:
        return DETRsegm(detr)
    return detr
コード例 #2
0
ファイル: hubconf.py プロジェクト: HAadams/detr
def _make_detr(backbone_name: str, dilation=False, num_classes=91, mask=False):
    hidden_dim = 256
    backbone = Backbone(backbone_name, train_backbone=True, return_interm_layers=mask, dilation=dilation)
    pos_enc = PositionEmbeddingSine(hidden_dim // 2, normalize=True)
    backbone_with_pos_enc = Joiner(backbone, pos_enc)
    backbone_with_pos_enc.num_channels = backbone.num_channels
    transformer = Transformer(d_model=hidden_dim, return_intermediate_dec=True)
    detr = DETR(backbone_with_pos_enc, transformer, num_classes=num_classes, num_queries=100)
    if mask:
        return DETRsegm(detr)
    return detr
コード例 #3
0
ファイル: detr.py プロジェクト: whq-hqw/detr_change
def build(args):
    num_classes = 20 if args.dataset_file != 'coco' else 91
    if args.dataset_file == "coco_panoptic":
        num_classes = 250
    device = torch.device(args.device)

    backbone = build_backbone(args)

    transformer = build_transformer(args)

    model = DETR(
        args,
        backbone,
        transformer,
        num_classes=num_classes,
        num_queries=args.num_queries,
        aux_loss=args.aux_loss,
    )
    if args.masks:
        model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None))
    matcher = build_matcher(args)
    weight_dict = {'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef}
    weight_dict['loss_giou'] = args.giou_loss_coef
    if args.masks:
        weight_dict["loss_mask"] = args.mask_loss_coef
        weight_dict["loss_dice"] = args.dice_loss_coef
    # TODO this is a hack
    if args.aux_loss:
        aux_weight_dict = {}
        for i in range(args.dec_layers - 1):
            aux_weight_dict.update(
                {k + f'_{i}': v
                 for k, v in weight_dict.items()})
        weight_dict.update(aux_weight_dict)

    losses = ['labels', 'boxes', 'cardinality']
    if args.masks:
        losses += ["masks"]
    criterion = SetCriterion(num_classes,
                             matcher=matcher,
                             weight_dict=weight_dict,
                             eos_coef=args.eos_coef,
                             losses=losses)
    criterion.to(device)
    postprocessors = {'bbox': PostProcess()}
    if args.masks:
        postprocessors['segm'] = PostProcessSegm()
        if args.dataset_file == "coco_panoptic":
            is_thing_map = {i: i <= 90 for i in range(201)}
            postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map,
                                                             threshold=0.85)

    return model, criterion, postprocessors
コード例 #4
0
ファイル: detr.py プロジェクト: openseg-group/detr
def build(args):
    # the `num_classes` naming here is somewhat misleading.
    # it indeed corresponds to `max_obj_id + 1`, where max_obj_id
    # is the maximum id for a class in your dataset. For example,
    # COCO has a max_obj_id of 90, so we pass `num_classes` to be 91.
    # As another example, for a dataset that has a single class with id 1,
    # you should pass `num_classes` to be 2 (max_obj_id + 1).
    # For more details on this, check the following discussion
    # https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223
    num_classes = 20 if args.dataset_file != 'coco' else 91
    if args.dataset_file == "coco_panoptic":
        # for panoptic, we just add a num_classes that is large enough to hold
        # max_obj_id + 1, but the exact value doesn't really matter
        num_classes = 250
    device = torch.device(args.device)

    backbone = build_backbone(args)

    if int(os.environ.get("cross_transformer", 0)):
        transformer = build_cross_transformer(args)
    elif int(os.environ.get("sparse_transformer", 0)):
        transformer = build_sparse_transformer(args)
    elif int(os.environ.get("linear_transformer", 0)):
        transformer = build_linear_transformer(args)
    else:
        transformer = build_transformer(args)

    model = DETR(
        backbone,
        transformer,
        num_classes=num_classes,
        num_queries=args.num_queries,
        aux_loss=args.aux_loss,
    )
    if args.masks:
        model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None))
    matcher = build_matcher(args)
    weight_dict = {'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef}
    weight_dict['loss_giou'] = args.giou_loss_coef
    if args.masks:
        weight_dict["loss_mask"] = args.mask_loss_coef
        weight_dict["loss_dice"] = args.dice_loss_coef
    # TODO this is a hack
    if args.aux_loss:
        aux_weight_dict = {}
        for i in range(args.dec_layers - 1):
            aux_weight_dict.update(
                {k + f'_{i}': v
                 for k, v in weight_dict.items()})
        weight_dict.update(aux_weight_dict)

    losses = ['labels', 'boxes', 'cardinality']
    if args.masks:
        losses += ["masks"]
    criterion = SetCriterion(num_classes,
                             matcher=matcher,
                             weight_dict=weight_dict,
                             eos_coef=args.eos_coef,
                             losses=losses)
    criterion.to(device)
    postprocessors = {'bbox': PostProcess()}
    if args.masks:
        postprocessors['segm'] = PostProcessSegm()
        if args.dataset_file == "coco_panoptic":
            is_thing_map = {i: i <= 90 for i in range(201)}
            postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map,
                                                             threshold=0.85)

    return model, criterion, postprocessors
コード例 #5
0
ファイル: detr.py プロジェクト: yhZhai/detr
    def __init__(self, cfg):
        super().__init__()

        self.device = torch.device(cfg.MODEL.DEVICE)

        self.num_classes = cfg.MODEL.DETR.NUM_CLASSES
        self.mask_on = cfg.MODEL.MASK_ON
        hidden_dim = cfg.MODEL.DETR.HIDDEN_DIM
        num_queries = cfg.MODEL.DETR.NUM_OBJECT_QUERIES
        # Transformer parameters:
        nheads = cfg.MODEL.DETR.NHEADS
        dropout = cfg.MODEL.DETR.DROPOUT
        dim_feedforward = cfg.MODEL.DETR.DIM_FEEDFORWARD
        enc_layers = cfg.MODEL.DETR.ENC_LAYERS
        dec_layers = cfg.MODEL.DETR.DEC_LAYERS
        pre_norm = cfg.MODEL.DETR.PRE_NORM

        # Loss parameters:
        giou_weight = cfg.MODEL.DETR.GIOU_WEIGHT
        l1_weight = cfg.MODEL.DETR.L1_WEIGHT
        deep_supervision = cfg.MODEL.DETR.DEEP_SUPERVISION
        no_object_weight = cfg.MODEL.DETR.NO_OBJECT_WEIGHT

        N_steps = hidden_dim // 2
        d2_backbone = MaskedBackbone(cfg)
        backbone = Joiner(d2_backbone,
                          PositionEmbeddingSine(N_steps, normalize=True))
        backbone.num_channels = d2_backbone.num_channels

        transformer = Transformer(
            d_model=hidden_dim,
            dropout=dropout,
            nhead=nheads,
            dim_feedforward=dim_feedforward,
            num_encoder_layers=enc_layers,
            num_decoder_layers=dec_layers,
            normalize_before=pre_norm,
            return_intermediate_dec=deep_supervision,
        )

        self.detr = DETR(backbone,
                         transformer,
                         num_classes=self.num_classes,
                         num_queries=num_queries,
                         aux_loss=deep_supervision)
        if self.mask_on:
            frozen_weights = cfg.MODEL.DETR.FROZEN_WEIGHTS
            if frozen_weights != '':
                print("LOAD pre-trained weights")
                weight = torch.load(
                    frozen_weights,
                    map_location=lambda storage, loc: storage)['model']
                new_weight = {}
                for k, v in weight.items():
                    if 'detr.' in k:
                        new_weight[k.replace('detr.', '')] = v
                    else:
                        print(f"Skipping loading weight {k} from frozen model")
                del weight
                self.detr.load_state_dict(new_weight)
                del new_weight
            self.detr = DETRsegm(self.detr, freeze_detr=(frozen_weights != ''))
            self.seg_postprocess = PostProcessSegm

        self.detr.to(self.device)

        # building criterion
        matcher = HungarianMatcher(cost_class=1,
                                   cost_bbox=l1_weight,
                                   cost_giou=giou_weight)
        weight_dict = {"loss_ce": 1, "loss_bbox": l1_weight}
        weight_dict["loss_giou"] = giou_weight
        if deep_supervision:
            aux_weight_dict = {}
            for i in range(dec_layers - 1):
                aux_weight_dict.update(
                    {k + f"_{i}": v
                     for k, v in weight_dict.items()})
            weight_dict.update(aux_weight_dict)
        losses = ["labels", "boxes", "cardinality"]
        if self.mask_on:
            losses += ["masks"]
        self.criterion = SetCriterion(
            self.num_classes,
            matcher=matcher,
            weight_dict=weight_dict,
            eos_coef=no_object_weight,
            losses=losses,
        )
        self.criterion.to(self.device)

        pixel_mean = torch.Tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(
            3, 1, 1)
        pixel_std = torch.Tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(
            3, 1, 1)
        self.normalizer = lambda x: (x - pixel_mean) / pixel_std
        self.to(self.device)
コード例 #6
0
ファイル: detr.py プロジェクト: yhZhai/detr
class Detr(nn.Module):
    """
    Implement Detr
    """
    def __init__(self, cfg):
        super().__init__()

        self.device = torch.device(cfg.MODEL.DEVICE)

        self.num_classes = cfg.MODEL.DETR.NUM_CLASSES
        self.mask_on = cfg.MODEL.MASK_ON
        hidden_dim = cfg.MODEL.DETR.HIDDEN_DIM
        num_queries = cfg.MODEL.DETR.NUM_OBJECT_QUERIES
        # Transformer parameters:
        nheads = cfg.MODEL.DETR.NHEADS
        dropout = cfg.MODEL.DETR.DROPOUT
        dim_feedforward = cfg.MODEL.DETR.DIM_FEEDFORWARD
        enc_layers = cfg.MODEL.DETR.ENC_LAYERS
        dec_layers = cfg.MODEL.DETR.DEC_LAYERS
        pre_norm = cfg.MODEL.DETR.PRE_NORM

        # Loss parameters:
        giou_weight = cfg.MODEL.DETR.GIOU_WEIGHT
        l1_weight = cfg.MODEL.DETR.L1_WEIGHT
        deep_supervision = cfg.MODEL.DETR.DEEP_SUPERVISION
        no_object_weight = cfg.MODEL.DETR.NO_OBJECT_WEIGHT

        N_steps = hidden_dim // 2
        d2_backbone = MaskedBackbone(cfg)
        backbone = Joiner(d2_backbone,
                          PositionEmbeddingSine(N_steps, normalize=True))
        backbone.num_channels = d2_backbone.num_channels

        transformer = Transformer(
            d_model=hidden_dim,
            dropout=dropout,
            nhead=nheads,
            dim_feedforward=dim_feedforward,
            num_encoder_layers=enc_layers,
            num_decoder_layers=dec_layers,
            normalize_before=pre_norm,
            return_intermediate_dec=deep_supervision,
        )

        self.detr = DETR(backbone,
                         transformer,
                         num_classes=self.num_classes,
                         num_queries=num_queries,
                         aux_loss=deep_supervision)
        if self.mask_on:
            frozen_weights = cfg.MODEL.DETR.FROZEN_WEIGHTS
            if frozen_weights != '':
                print("LOAD pre-trained weights")
                weight = torch.load(
                    frozen_weights,
                    map_location=lambda storage, loc: storage)['model']
                new_weight = {}
                for k, v in weight.items():
                    if 'detr.' in k:
                        new_weight[k.replace('detr.', '')] = v
                    else:
                        print(f"Skipping loading weight {k} from frozen model")
                del weight
                self.detr.load_state_dict(new_weight)
                del new_weight
            self.detr = DETRsegm(self.detr, freeze_detr=(frozen_weights != ''))
            self.seg_postprocess = PostProcessSegm

        self.detr.to(self.device)

        # building criterion
        matcher = HungarianMatcher(cost_class=1,
                                   cost_bbox=l1_weight,
                                   cost_giou=giou_weight)
        weight_dict = {"loss_ce": 1, "loss_bbox": l1_weight}
        weight_dict["loss_giou"] = giou_weight
        if deep_supervision:
            aux_weight_dict = {}
            for i in range(dec_layers - 1):
                aux_weight_dict.update(
                    {k + f"_{i}": v
                     for k, v in weight_dict.items()})
            weight_dict.update(aux_weight_dict)
        losses = ["labels", "boxes", "cardinality"]
        if self.mask_on:
            losses += ["masks"]
        self.criterion = SetCriterion(
            self.num_classes,
            matcher=matcher,
            weight_dict=weight_dict,
            eos_coef=no_object_weight,
            losses=losses,
        )
        self.criterion.to(self.device)

        pixel_mean = torch.Tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(
            3, 1, 1)
        pixel_std = torch.Tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(
            3, 1, 1)
        self.normalizer = lambda x: (x - pixel_mean) / pixel_std
        self.to(self.device)

    def forward(self, batched_inputs):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper` .
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:

                * image: Tensor, image in (C, H, W) format.
                * instances: Instances

                Other information that's included in the original dicts, such as:

                * "height", "width" (int): the output resolution of the model, used in inference.
                  See :meth:`postprocess` for details.
        Returns:
            dict[str: Tensor]:
                mapping from a named loss to a tensor storing the loss. Used during training only.
        """
        images = self.preprocess_image(batched_inputs)
        output = self.detr(images)

        if self.training:
            gt_instances = [
                x["instances"].to(self.device) for x in batched_inputs
            ]

            targets = self.prepare_targets(gt_instances)
            loss_dict = self.criterion(output, targets)
            weight_dict = self.criterion.weight_dict
            for k in loss_dict.keys():
                if k in weight_dict:
                    loss_dict[k] *= weight_dict[k]
            return loss_dict
        else:
            box_cls = output["pred_logits"]
            box_pred = output["pred_boxes"]
            mask_pred = output["pred_masks"] if self.mask_on else None
            results = self.inference(box_cls, box_pred, mask_pred,
                                     images.image_sizes)
            processed_results = []
            for results_per_image, input_per_image, image_size in zip(
                    results, batched_inputs, images.image_sizes):
                height = input_per_image.get("height", image_size[0])
                width = input_per_image.get("width", image_size[1])
                r = detector_postprocess(results_per_image, height, width)
                processed_results.append({"instances": r})
            return processed_results

    def prepare_targets(self, targets):
        new_targets = []
        for targets_per_image in targets:
            h, w = targets_per_image.image_size
            image_size_xyxy = torch.as_tensor([w, h, w, h],
                                              dtype=torch.float,
                                              device=self.device)
            gt_classes = targets_per_image.gt_classes
            gt_boxes = targets_per_image.gt_boxes.tensor / image_size_xyxy
            gt_boxes = box_xyxy_to_cxcywh(gt_boxes)
            new_targets.append({"labels": gt_classes, "boxes": gt_boxes})
            if self.mask_on and hasattr(targets_per_image, 'gt_masks'):
                gt_masks = targets_per_image.gt_masks
                gt_masks = convert_coco_poly_to_mask(gt_masks.polygons, h, w)
                new_targets[-1].update({'masks': gt_masks})
        return new_targets

    def inference(self, box_cls, box_pred, mask_pred, image_sizes):
        """
        Arguments:
            box_cls (Tensor): tensor of shape (batch_size, num_queries, K).
                The tensor predicts the classification probability for each query.
            box_pred (Tensor): tensors of shape (batch_size, num_queries, 4).
                The tensor predicts 4-vector (x,y,w,h) box
                regression values for every queryx
            image_sizes (List[torch.Size]): the input image sizes

        Returns:
            results (List[Instances]): a list of #images elements.
        """
        assert len(box_cls) == len(image_sizes)
        results = []

        # For each box we assign the best class or the second best if the best on is `no_object`.
        scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1)

        for i, (scores_per_image, labels_per_image, box_pred_per_image,
                image_size) in enumerate(
                    zip(scores, labels, box_pred, image_sizes)):
            result = Instances(image_size)
            result.pred_boxes = Boxes(box_cxcywh_to_xyxy(box_pred_per_image))

            result.pred_boxes.scale(scale_x=image_size[1],
                                    scale_y=image_size[0])
            if self.mask_on:
                mask = F.interpolate(mask_pred[i].unsqueeze(0),
                                     size=image_size,
                                     mode='bilinear',
                                     align_corners=False)
                mask = mask[0].sigmoid() > 0.5
                B, N, H, W = mask_pred.shape
                mask = BitMasks(mask.cpu()).crop_and_resize(
                    result.pred_boxes.tensor.cpu(), 32)
                result.pred_masks = mask.unsqueeze(1).to(mask_pred[0].device)

            result.scores = scores_per_image
            result.pred_classes = labels_per_image
            results.append(result)
        return results

    def preprocess_image(self, batched_inputs):
        """
        Normalize, pad and batch the input images.
        """
        images = [
            self.normalizer(x["image"].to(self.device)) for x in batched_inputs
        ]
        images = ImageList.from_tensors(images)
        return images