import os print('Loading model..') net = SSD300(num_classes=2) checkpoint = torch.load('./example/ssd+/checkpoint/ckpt.pth') net.load_state_dict(checkpoint['net']) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") cudnn.benchmark = True net.to(device) # net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count())) cudnn.benchmark = True net.eval() box_coder = SSDBoxCoder(net) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4140, 0.4265, 0.4172), (0.2646, 0.2683, 0.2751)) ]) file_path = '/home/zwj/project/data/caltech/ImageSets/Main/test.txt' data_dir = '/home/zwj/project/data/caltech/JPEGImages/' result_dir = './results/' with open(file_path) as f: lines = f.readlines() al = len(lines) file_content = {} for num, line in enumerate(lines):
} net.extractor.features.layers.load_state_dict(d_proc, strict=False) # net.load_state_dict(torch.load(args.model)) best_loss = float('inf') start_epoch = 0 if args.resume: print('==> Resuming from checkpoint..') checkpoint = torch.load(args.checkpoint) net.load_state_dict(checkpoint['net']) best_loss = checkpoint['loss'] start_epoch = checkpoint['epoch'] print('==> Preparing dataset..') box_coder = SSDBoxCoder(net) img_size = 300 def transform_train(img, boxes, labels): img = random_distort(img) # if random.random() < 0.5: # img, boxes = random_paste(img, boxes, max_ratio=4, fill=(123, 116, 103)) img, boxes, labels = random_crop(img, boxes, labels) img, boxes = resize(img, boxes, size=(img_size, img_size), random_interpolation=True) img, boxes = random_flip(img, boxes) img = transforms.Compose([ transforms.ToTensor(),