コード例 #1
0
    def __init__(self, in_planes: int, stride: int = 1):
        super(VarTemporalResidualBlock, self).__init__()
        self.in_planes = in_planes
        self.stride = stride

        self.conv1 = tc.conv3x3(in_planes, in_planes, stride)
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = tc.conv3x3(in_planes, in_planes)
        self.bn2 = nn.BatchNorm2d(in_planes)

        self.mean = tc.conv1x1(in_planes, in_planes)
        self.var = nn.Sequential(tc.conv1x1(in_planes, in_planes),
                                 nn.Softplus())

        self.rsample = models.common.ReparameterizedSample()
コード例 #2
0
    def _make_transpose(self,
                        out_planes: int,
                        blocks: int,
                        stride: int = 1) -> nn.Module:
        if stride != 1:
            upsample = nn.Sequential(
                nn.Upsample(scale_factor=2, mode='bicubic',
                            align_corners=True),
                tc.conv3x3(self.in_planes,
                           out_planes * TransSpatialResidualBlock.expansion,
                           1),
                nn.BatchNorm2d(out_planes),
            )
        elif self.in_planes != out_planes:
            upsample = nn.Sequential(
                tc.conv1x1(self.in_planes,
                           out_planes * TransSpatialResidualBlock.expansion,
                           stride),
                nn.BatchNorm2d(out_planes),
            )
        else:
            upsample = None
        layers = []
        for _ in range(0, blocks - 1):
            layers.append(
                TransSpatialResidualBlock(self.in_planes, self.in_planes))
        layers.append(
            TransSpatialResidualBlock(self.in_planes, out_planes, stride,
                                      upsample))
        self.in_planes = out_planes * TransSpatialResidualBlock.expansion
        if self.flow:
            self.in_planes *= 2

        return nn.Sequential(*layers)
コード例 #3
0
    def __init__(self, out_planes: t.Tuple[int, ...], bottleneck_planes: int):
        super(SpatialResNetEncoder, self).__init__()
        self.in_planes = out_planes[0]
        self.out_planes = out_planes
        self.bottleneck_planes = bottleneck_planes

        self.conv1 = nn.Conv2d(3,
                               self.out_planes[0],
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(self.out_planes[0])
        self.relu = nn.ReLU(inplace=True)
        self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layers = nn.ModuleList()
        self.layers.append(self._make_layer(self.out_planes[1], 2))
        for out_plane in self.out_planes[2:]:
            self.layers.append(self._make_layer(out_plane, 2, stride=2))
        self.bottleneck = nn.Sequential(
            tc.conv1x1(self.in_planes, self.bottleneck_planes),
            nn.BatchNorm2d(self.bottleneck_planes),
            nn.ReLU(inplace=True),
        )
コード例 #4
0
    def _make_layer(self,
                    planes: int,
                    blocks: int,
                    stride: int = 1) -> nn.Module:
        downsample = None
        if stride != 1 or self.in_planes != planes * SpatialResidualBlock.expansion:
            downsample = nn.Sequential(
                tc.conv1x1(self.in_planes,
                           planes * SpatialResidualBlock.expansion, stride),
                nn.BatchNorm2d(planes * SpatialResidualBlock.expansion),
            )
        layers = [
            SpatialResidualBlock(self.in_planes, planes, stride, downsample)
        ]
        self.in_planes = planes * SpatialResidualBlock.expansion
        for _ in range(1, blocks):
            layers.append(SpatialResidualBlock(self.in_planes, planes, 1))

        return nn.Sequential(*layers)
コード例 #5
0
    def __init__(self, in_planes: int, out_planes: t.Tuple[int, ...],
                 flow: bool):
        super(SpatialResNetDecoder, self).__init__()

        self.in_planes = in_planes
        self.out_planes = out_planes
        self.flow = flow

        self.debottleneck = nn.Sequential(
            tc.conv1x1(self.in_planes, self.out_planes[0]),
            nn.BatchNorm2d(self.out_planes[0]),
            nn.ReLU(inplace=True),
        )
        self.in_planes = self.out_planes[0]
        if self.flow:
            self.in_planes *= 2

        self.layers = nn.ModuleList()
        for out_plane in self.out_planes[1:-1]:
            self.layers.append(self._make_transpose(out_plane, 2, stride=2))
        self.layers.append(
            self._make_transpose(self.out_planes[-1], 2, stride=1))

        if self.flow:
            self.final = nn.ConvTranspose2d(self.out_planes[-1],
                                            2,
                                            kernel_size=3,
                                            stride=1,
                                            padding=1,
                                            bias=True)
        else:
            self.final = nn.ConvTranspose2d(self.out_planes[-1],
                                            3,
                                            kernel_size=3,
                                            stride=1,
                                            padding=1,
                                            bias=True)
            self.final_act = nn.Sigmoid()