コード例 #1
0
def test():
    # get device
    device = get_device(0)

    # load net
    num_classes = 80
    anchor_size = config.ANCHOR_SIZE_COCO
    if args.dataset == 'COCO':
        cfg = config.coco_ab
        testset = COCODataset(
                    data_dir=args.dataset_root,
                    json_file='instances_val2017.json',
                    name='val2017',
                    img_size=cfg['min_dim'][0],
                    debug=args.debug)
        mean = config.MEANS
    elif args.dataset == 'VOC':
        cfg = config.voc_ab
        testset = VOCDetection(VOC_ROOT, [('2007', 'test')], None, VOCAnnotationTransform())
        mean = config.MEANS


    if args.version == 'yolo_v2':
        from models.yolo_v2 import myYOLOv2
        net = myYOLOv2(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=anchor_size)
        print('Let us test yolo-v2 on the MSCOCO dataset ......')
    
    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        net = myYOLOv3(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=anchor_size)

    elif args.version == 'tiny_yolo_v2':
        from models.tiny_yolo_v2 import YOLOv2tiny    
        net = YOLOv2tiny(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.ANCHOR_SIZE)
   
    elif args.version == 'tiny_yolo_v3':
        from models.tiny_yolo_v3 import YOLOv3tiny
    
        net = YOLOv3tiny(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.MULTI_ANCHOR_SIZE)

    net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test_net(net, device, testset,
             BaseTransform(net.input_size, mean),
             thresh=args.visual_threshold)
コード例 #2
0
def test():
    # get device
    if args.cuda:
        print('use cuda')
        cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # load net
    num_classes = len(VOC_CLASSES)
    testset = VOCDetection(args.voc_root, [('2007', 'test')], None, VOCAnnotationTransform())
    mean = config.MEANS

    cfg = config.voc_ab
    if args.version == 'yolo_v2':
        from models.yolo_v2 import myYOLOv2
        net = myYOLOv2(device, input_size=cfg['min_dim'], num_classes=num_classes, anchor_size=config.ANCHOR_SIZE)
        print('Let us test yolo-v2 on the VOC0712 dataset ......')

    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        net = myYOLOv3(device, input_size=cfg['min_dim'], num_classes=num_classes, anchor_size=config.MULTI_ANCHOR_SIZE)
    
    elif args.version == 'tiny_yolo_v2':
        from models.tiny_yolo_v2 import YOLOv2tiny    
        net = YOLOv2tiny(device, input_size=cfg['min_dim'], num_classes=num_classes, anchor_size=config.ANCHOR_SIZE)
        print('Let us test tiny-yolo-v2 on the VOC0712 dataset ......')
   
    elif args.version == 'tiny_yolo_v3':
        from models.tiny_yolo_v3 import YOLOv3tiny
    
        net = YOLOv3tiny(device, input_size=cfg['min_dim'], num_classes=num_classes, anchor_size=config.MULTI_ANCHOR_SIZE)
        print('Let us test tiny-yolo-v3 on the VOC0712 dataset ......')

    net.load_state_dict(torch.load(args.trained_model, map_location=device))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test_net(net, device, testset,
             BaseTransform(net.input_size, mean=(0.406, 0.456, 0.485), std=(0.225, 0.224, 0.229)),
             thresh=args.visual_threshold)
コード例 #3
0
def test():
    # get device
    device = get_device(args.gpu_ind)

    # load net
    num_classes = len(VOC_CLASSES)
    testset = VOCDetection(args.voc_root, [('2007', 'test')], None, VOCAnnotationTransform())
    mean = config.MEANS

    cfg = config.voc_ab
    if args.version == 'yolo_v2':
        from models.yolo_v2 import myYOLOv2
        net = myYOLOv2(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.ANCHOR_SIZE)
        print('Let us test yolo-v2 on the VOC0712 dataset ......')

    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        net = myYOLOv3(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.MULTI_ANCHOR_SIZE)
    
    elif args.version == 'tiny_yolo_v2':
        from models.tiny_yolo_v2 import YOLOv2tiny    
        net = YOLOv2tiny(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.ANCHOR_SIZE)
        print('Let us test tiny-yolo-v2 on the VOC0712 dataset ......')
   
    elif args.version == 'tiny_yolo_v3':
        from models.tiny_yolo_v3 import YOLOv3tiny
    
        net = YOLOv3tiny(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.MULTI_ANCHOR_SIZE)
        print('Let us test tiny-yolo-v3 on the VOC0712 dataset ......')

    net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test_net(net, device, testset,
             BaseTransform(net.input_size, mean),
             thresh=args.visual_threshold)
コード例 #4
0
if __name__ == '__main__':
    num_classes = len(labelmap)
    device = get_device(args.gpu_ind)

    cfg = config.voc_ab
    if args.version == 'yolo_v2':
        from models.yolo_v2 import myYOLOv2
        net = myYOLOv2(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.ANCHOR_SIZE)
    
    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        net = myYOLOv3(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.MULTI_ANCHOR_SIZE)
    
    elif args.version == 'tiny_yolo_v2':
        from models.tiny_yolo_v2 import YOLOv2tiny    
        net = YOLOv2tiny(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.ANCHOR_SIZE)
        print('Let us eval tiny-yolo-v2 on the VOC0712 dataset ......')

    elif args.version == 'tiny_yolo_v3':
        from models.tiny_yolo_v3 import YOLOv3tiny
        net = YOLOv3tiny(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.MULTI_ANCHOR_SIZE)
        print('Let us eval tiny-yolo-v3 on the VOC0712 dataset ......')

    # load net
    net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
    net.eval()
    print('Finished loading model!')
    # load data
    dataset = VOCDetection(args.voc_root, [('2007', set_type)],
                           BaseTransform(net.input_size, dataset_mean),
                           VOCAnnotationTransform())
コード例 #5
0
                         input_size=cfg['min_dim'],
                         num_classes=args.num_classes,
                         anchor_size=ANCHOR_SIZE_COCO)
        print('Let us test yolo-v2 on the MSCOCO dataset ......')

    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        model = myYOLOv3(device,
                         input_size=cfg['min_dim'],
                         num_classes=args.num_classes,
                         anchor_size=MULTI_ANCHOR_SIZE_COCO)

    elif args.version == 'tiny_yolo_v2':
        from models.tiny_yolo_v2 import YOLOv2tiny
        model = YOLOv2tiny(device,
                           input_size=cfg['min_dim'],
                           num_classes=args.num_classes,
                           anchor_size=ANCHOR_SIZE_COCO)

    elif args.version == 'tiny_yolo_v3':
        from models.tiny_yolo_v3 import YOLOv3tiny

        model = YOLOv3tiny(device,
                           input_size=cfg['min_dim'],
                           num_classes=args.num_classes,
                           anchor_size=MULTI_ANCHOR_SIZE_COCO)

    else:
        print('Unknown Version !!!')
        exit()

    # load model
コード例 #6
0
def run():
    args = parse_args()

    if args.cuda:
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    if args.setup == 'VOC':
        print('use VOC style')
        cfg = config.voc_ab
        num_classes = 20
    elif args.setup == 'COCO':
        print('use COCO style')
        cfg = config.coco_ab
        num_classes = 80
    else:
        print('Only support VOC and COCO !!!')
        exit(0)

    if args.version == 'yolo_v2':
        from models.yolo_v2 import myYOLOv2
        if args.setup == 'VOC':
            anchor_size = config.ANCHOR_SIZE
        else:
            anchor_size = config.ANCHOR_SIZE_COCO

        net = myYOLOv2(device,
                       input_size=cfg['min_dim'],
                       num_classes=num_classes,
                       trainable=False,
                       anchor_size=anchor_size)

    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        if args.setup == 'VOC':
            anchor_size = config.MULTI_ANCHOR_SIZE
        else:
            anchor_size = config.MULTI_ANCHOR_SIZE_COCO

        net = myYOLOv3(device,
                       input_size=cfg['min_dim'],
                       num_classes=num_classes,
                       trainable=False,
                       anchor_size=anchor_size)

    elif args.version == 'tiny_yolo_v2':
        from models.tiny_yolo_v2 import YOLOv2tiny
        if args.setup == 'VOC':
            anchor_size = config.ANCHOR_SIZE
        else:
            anchor_size = config.ANCHOR_SIZE_COCO

        net = YOLOv2tiny(device,
                         input_size=cfg['min_dim'],
                         num_classes=num_classes,
                         trainable=False,
                         anchor_size=anchor_size)

    elif args.version == 'tiny_yolo_v3':
        from models.tiny_yolo_v3 import YOLOv3tiny
        if args.setup == 'VOC':
            anchor_size = config.MULTI_ANCHOR_SIZE
        else:
            anchor_size = config.MULTI_ANCHOR_SIZE_COCO

        net = YOLOv3tiny(device,
                         input_size=cfg['min_dim'],
                         num_classes=num_classes,
                         trainable=False,
                         anchor_size=anchor_size)

    net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
    net.to(device).eval()
    print('Finished loading model!')

    # run
    if args.mode == 'image':
        detect(net,
               device,
               BaseTransform(net.input_size,
                             mean=(0.406, 0.456, 0.485),
                             std=(0.225, 0.224, 0.229)),
               mode=args.mode,
               path_to_img=args.path_to_img,
               setup=args.setup)
    elif args.mode == 'video':
        detect(net,
               device,
               BaseTransform(net.input_size,
                             mean=(0.406, 0.456, 0.485),
                             std=(0.225, 0.224, 0.229)),
               mode=args.mode,
               path_to_vid=args.path_to_vid,
               path_to_save=args.path_to_saveVid,
               setup=args.setup)
コード例 #7
0
    if args.version == 'yolo_v2':
        from models.yolo_v2 import myYOLOv2
        total_anchor_size = tools.get_total_anchor_size(name='COCO')

        yolo_net = myYOLOv2(device, input_size=cfg['min_dim'], num_classes=args.num_classes, trainable=True, anchor_size=total_anchor_size, hr=hr)
        print('Let us train yolo-v2 on the MSCOCO dataset ......')

    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        total_anchor_size = tools.get_total_anchor_size(multi_scale=True, name='COCO')
        
        yolo_net = myYOLOv3(device, input_size=cfg['min_dim'], num_classes=args.num_classes, trainable=True, anchor_size=total_anchor_size, hr=hr)
        print('Let us train yolo-v3 on the MSCOCO dataset ......')

    elif args.version == 'tiny_yolo_v2':
        from models.tiny_yolo_v2 import YOLOv2tiny
        total_anchor_size = tools.get_total_anchor_size(name='COCO')
    
        yolo_net = YOLOv2tiny(device, input_size=cfg['min_dim'], num_classes=args.num_classes, trainable=True, anchor_size=total_anchor_size, hr=hr)
        print('Let us train tiny-yolo-v2 on the MSCOCO dataset ......')

    elif args.version == 'tiny_yolo_v3':
        from models.tiny_yolo_v3 import YOLOv3tiny
        total_anchor_size = tools.get_total_anchor_size(multi_scale=True, name='COCO')
    
        yolo_net = YOLOv3tiny(device, input_size=cfg['min_dim'], num_classes=args.num_classes, trainable=True, anchor_size=total_anchor_size, hr=hr)
        print('Let us train tiny-yolo-v3 on the MSCOCO dataset ......')

    train(yolo_net, device)
コード例 #8
0
def train():
    args = parse_args()

    path_to_save = os.path.join(args.save_folder, args.version)
    os.makedirs(path_to_save, exist_ok=True)

    hr = False
    if args.high_resolution:
        print('use hi-res backbone')
        hr = True

    cfg = voc_ab

    if args.cuda:
        print('use cuda')
        cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # use multi-scale trick
    if args.multi_scale:
        print('use multi-scale trick.')
        ms_inds = range(len(cfg['multi_scale']))
        input_size = [608, 608]
        dataset = VOCDetection(root=args.dataset_root,
                               transform=SSDAugmentation([608, 608],
                                                         mean=(0.406, 0.456,
                                                               0.485),
                                                         std=(0.225, 0.224,
                                                              0.229)))

    else:
        input_size = cfg['min_dim']
        dataset = VOCDetection(root=args.dataset_root,
                               transform=SSDAugmentation(cfg['min_dim'],
                                                         mean=(0.406, 0.456,
                                                               0.485),
                                                         std=(0.225, 0.224,
                                                              0.229)))

    # build model
    if args.version == 'yolo_v2':
        from models.yolo_v2 import myYOLOv2
        total_anchor_size = tools.get_total_anchor_size()

        yolo_net = myYOLOv2(device,
                            input_size=input_size,
                            num_classes=args.num_classes,
                            trainable=True,
                            anchor_size=total_anchor_size,
                            hr=hr)
        print('Let us train yolo-v2 on the VOC0712 dataset ......')

    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        total_anchor_size = tools.get_total_anchor_size(multi_level=True)

        yolo_net = myYOLOv3(device,
                            input_size=input_size,
                            num_classes=args.num_classes,
                            trainable=True,
                            anchor_size=total_anchor_size,
                            hr=hr)
        print('Let us train yolo-v3 on the VOC0712 dataset ......')

    elif args.version == 'tiny_yolo_v2':
        from models.tiny_yolo_v2 import YOLOv2tiny
        total_anchor_size = tools.get_total_anchor_size()

        yolo_net = YOLOv2tiny(device,
                              input_size=input_size,
                              num_classes=args.num_classes,
                              trainable=True,
                              anchor_size=total_anchor_size,
                              hr=hr)
        print('Let us train tiny-yolo-v2 on the VOC0712 dataset ......')

    elif args.version == 'tiny_yolo_v3':
        from models.tiny_yolo_v3 import YOLOv3tiny
        total_anchor_size = tools.get_total_anchor_size(multi_level=True)

        yolo_net = YOLOv3tiny(device,
                              input_size=input_size,
                              num_classes=args.num_classes,
                              trainable=True,
                              anchor_size=total_anchor_size,
                              hr=hr)
        print('Let us train tiny-yolo-v3 on the VOC0712 dataset ......')

    else:
        print('Unknown version !!!')
        exit()

    # finetune the model trained on COCO
    if args.resume is not None:
        print('finetune COCO trained ')
        yolo_net.load_state_dict(torch.load(args.resume, map_location=device),
                                 strict=False)

    # use tfboard
    if args.tfboard:
        print('use tensorboard')
        from torch.utils.tensorboard import SummaryWriter
        c_time = time.strftime('%Y-%m-%d %H:%M:%S',
                               time.localtime(time.time()))
        log_path = os.path.join('log/voc/', args.version, c_time)
        os.makedirs(log_path, exist_ok=True)

        writer = SummaryWriter(log_path)

    print(
        "----------------------------------------Object Detection--------------------------------------------"
    )
    model = yolo_net
    model.to(device)

    base_lr = args.lr
    tmp_lr = base_lr
    optimizer = optim.SGD(model.parameters(),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)

    # loss counters
    print("----------------------------------------------------------")
    print("Let's train OD network !")
    print('Training on:', dataset.name)
    print('The dataset size:', len(dataset))
    print("----------------------------------------------------------")

    epoch_size = len(dataset) // args.batch_size
    max_epoch = cfg['max_epoch']

    data_loader = data.DataLoader(dataset,
                                  args.batch_size,
                                  num_workers=args.num_workers,
                                  shuffle=True,
                                  collate_fn=detection_collate,
                                  pin_memory=True)
    # create batch iterator
    t0 = time.time()

    # start training
    for epoch in range(max_epoch):

        # use cos lr
        if args.cos and epoch > 20 and epoch <= max_epoch - 20:
            # use cos lr
            tmp_lr = 0.00001 + 0.5 * (base_lr - 0.00001) * (
                1 + math.cos(math.pi * (epoch - 20) * 1. / (max_epoch - 20)))
            set_lr(optimizer, tmp_lr)

        elif args.cos and epoch > max_epoch - 20:
            tmp_lr = 0.00001
            set_lr(optimizer, tmp_lr)

        # use step lr
        else:
            if epoch in cfg['lr_epoch']:
                tmp_lr = tmp_lr * 0.1
                set_lr(optimizer, tmp_lr)

        for iter_i, (images, targets) in enumerate(data_loader):
            # WarmUp strategy for learning rate
            if not args.no_warm_up:
                if epoch < args.wp_epoch:
                    tmp_lr = base_lr * pow((iter_i + epoch * epoch_size) * 1. /
                                           (args.wp_epoch * epoch_size), 4)
                    # tmp_lr = 1e-6 + (base_lr-1e-6) * (iter_i+epoch*epoch_size) / (epoch_size * (args.wp_epoch))
                    set_lr(optimizer, tmp_lr)

                elif epoch == args.wp_epoch and iter_i == 0:
                    tmp_lr = base_lr
                    set_lr(optimizer, tmp_lr)

            targets = [label.tolist() for label in targets]

            # make train label
            if args.version == 'yolo_v2' or args.version == 'tiny_yolo_v2':
                targets = tools.gt_creator(input_size, yolo_net.stride,
                                           targets)
            elif args.version == 'yolo_v3' or args.version == 'tiny_yolo_v3':
                targets = tools.multi_gt_creator(input_size, yolo_net.stride,
                                                 targets)

            # to device
            images = images.to(device)
            targets = torch.tensor(targets).float().to(device)

            # forward and loss
            conf_loss, cls_loss, txtytwth_loss, total_loss = model(
                images, target=targets)

            # backprop and update
            total_loss.backward()
            optimizer.step()
            optimizer.zero_grad()

            if iter_i % 10 == 0:
                if args.tfboard:
                    # viz loss
                    writer.add_scalar('object loss', conf_loss.item(),
                                      iter_i + epoch * epoch_size)
                    writer.add_scalar('class loss', cls_loss.item(),
                                      iter_i + epoch * epoch_size)
                    writer.add_scalar('local loss', txtytwth_loss.item(),
                                      iter_i + epoch * epoch_size)

                t1 = time.time()
                print(
                    '[Epoch %d/%d][Iter %d/%d][lr %.6f]'
                    '[Loss: obj %.2f || cls %.2f || bbox %.2f || total %.2f || size %d || time: %.2f]'
                    % (epoch + 1, max_epoch, iter_i, epoch_size, tmp_lr,
                       conf_loss.item(), cls_loss.item(), txtytwth_loss.item(),
                       total_loss.item(), input_size[0], t1 - t0),
                    flush=True)

                t0 = time.time()

            # multi-scale trick
            if iter_i % 10 == 0 and iter_i > 0 and args.multi_scale:
                ms_ind = random.sample(ms_inds, 1)[0]
                input_size = cfg['multi_scale'][int(ms_ind)]
                model.set_grid(input_size)

                # change input dim
                # But this operation will report bugs when we use more workers in data loader, so I have to use 0 workers.
                # I don't know how to make it suit more workers, and I'm trying to solve this question.
                data_loader.dataset.reset_transform(
                    SSDAugmentation(input_size,
                                    mean=(0.406, 0.456, 0.485),
                                    std=(0.225, 0.224, 0.229)))

        if (epoch + 1) % 10 == 0:
            print('Saving state, epoch:', epoch + 1)
            torch.save(
                model.state_dict(),
                os.path.join(path_to_save,
                             args.version + '_' + repr(epoch + 1) + '.pth'))
コード例 #9
0
def test():
    # get device
    if args.cuda:
        print('use cuda')
        cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # load net
    num_classes = 80
    if args.dataset == 'COCO':
        cfg = config.coco_ab
        testset = COCODataset(data_dir=args.dataset_root,
                              json_file='instances_val2017.json',
                              name='val2017',
                              img_size=cfg['min_dim'][0],
                              debug=args.debug)
    elif args.dataset == 'VOC':
        cfg = config.voc_ab
        testset = VOCDetection(VOC_ROOT, [('2007', 'test')], None,
                               VOCAnnotationTransform())

    if args.version == 'yolo_v2':
        from models.yolo_v2 import myYOLOv2
        net = myYOLOv2(device,
                       input_size=cfg['min_dim'],
                       num_classes=num_classes,
                       anchor_size=config.ANCHOR_SIZE_COCO)
        print('Let us test yolo-v2 on the MSCOCO dataset ......')

    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        net = myYOLOv3(device,
                       input_size=cfg['min_dim'],
                       num_classes=num_classes,
                       anchor_size=config.MULTI_ANCHOR_SIZE_COCO)

    elif args.version == 'tiny_yolo_v2':
        from models.tiny_yolo_v2 import YOLOv2tiny
        net = YOLOv2tiny(device,
                         input_size=cfg['min_dim'],
                         num_classes=num_classes,
                         anchor_size=config.ANCHOR_SIZE_COCO)

    elif args.version == 'tiny_yolo_v3':
        from models.tiny_yolo_v3 import YOLOv3tiny

        net = YOLOv3tiny(device,
                         input_size=cfg['min_dim'],
                         num_classes=num_classes,
                         anchor_size=config.MULTI_ANCHOR_SIZE_COCO)

    net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test_net(net,
             device,
             testset,
             BaseTransform(net.input_size,
                           mean=(0.406, 0.456, 0.485),
                           std=(0.225, 0.224, 0.229)),
             thresh=args.visual_threshold)
コード例 #10
0
def train():
    args = parse_args()
    data_dir = args.dataset_root

    path_to_save = os.path.join(args.save_folder, args.version)
    os.makedirs(path_to_save, exist_ok=True)

    hr = False
    if args.high_resolution:
        print('use hi-res backbone')
        hr = True

    cfg = coco_ab

    if args.cuda:
        print('use cuda')
        cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    if args.multi_scale:
        print('Let us use the multi-scale trick.')
        input_size = [608, 608]
        dataset = COCODataset(data_dir=data_dir,
                              img_size=608,
                              transform=SSDAugmentation([608, 608],
                                                        mean=(0.406, 0.456,
                                                              0.485),
                                                        std=(0.225, 0.224,
                                                             0.229)),
                              debug=args.debug)
    else:
        input_size = cfg['min_dim']
        dataset = COCODataset(data_dir=data_dir,
                              img_size=cfg['min_dim'][0],
                              transform=SSDAugmentation(cfg['min_dim'],
                                                        mean=(0.406, 0.456,
                                                              0.485),
                                                        std=(0.225, 0.224,
                                                             0.229)),
                              debug=args.debug)

    # build model
    if args.version == 'yolo_v2':
        from models.yolo_v2 import myYOLOv2
        total_anchor_size = tools.get_total_anchor_size(name='COCO')

        yolo_net = myYOLOv2(device,
                            input_size=input_size,
                            num_classes=args.num_classes,
                            trainable=True,
                            anchor_size=total_anchor_size,
                            hr=hr)
        print('Let us train yolo-v2 on the COCO dataset ......')

    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        total_anchor_size = tools.get_total_anchor_size(multi_level=True,
                                                        name='COCO')

        yolo_net = myYOLOv3(device,
                            input_size=input_size,
                            num_classes=args.num_classes,
                            trainable=True,
                            anchor_size=total_anchor_size,
                            hr=hr)
        print('Let us train yolo-v3 on the COCO dataset ......')

    elif args.version == 'tiny_yolo_v2':
        from models.tiny_yolo_v2 import YOLOv2tiny
        total_anchor_size = tools.get_total_anchor_size(name='COCO')

        yolo_net = YOLOv2tiny(device,
                              input_size=input_size,
                              num_classes=args.num_classes,
                              trainable=True,
                              anchor_size=total_anchor_size,
                              hr=hr)
        print('Let us train tiny-yolo-v2 on the COCO dataset ......')

    elif args.version == 'tiny_yolo_v3':
        from models.tiny_yolo_v3 import YOLOv3tiny
        total_anchor_size = tools.get_total_anchor_size(multi_level=True,
                                                        name='COCO')

        yolo_net = YOLOv3tiny(device,
                              input_size=input_size,
                              num_classes=args.num_classes,
                              trainable=True,
                              anchor_size=total_anchor_size,
                              hr=hr)
        print('Let us train tiny-yolo-v3 on the COCO dataset ......')

    else:
        print('Unknown version !!!')
        exit()

    print("Setting Arguments.. : ", args)
    print("----------------------------------------------------------")
    print('Loading the MSCOCO dataset...')
    print('Training model on:', dataset.name)
    print('The dataset size:', len(dataset))
    print("----------------------------------------------------------")

    # use tfboard
    if args.tfboard:
        print('use tensorboard')
        from torch.utils.tensorboard import SummaryWriter
        c_time = time.strftime('%Y-%m-%d %H:%M:%S',
                               time.localtime(time.time()))
        log_path = os.path.join('log/coco/', args.version, c_time)
        os.makedirs(log_path, exist_ok=True)

        writer = SummaryWriter(log_path)

    print('Let us train yolo-v2 on the MSCOCO dataset ......')

    model = yolo_net
    model.to(device).train()

    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=args.batch_size,
                                             shuffle=True,
                                             collate_fn=detection_collate,
                                             num_workers=args.num_workers)

    evaluator = COCOAPIEvaluator(data_dir=data_dir,
                                 img_size=cfg['min_dim'],
                                 device=device,
                                 transform=BaseTransform(cfg['min_dim'],
                                                         mean=(0.406, 0.456,
                                                               0.485),
                                                         std=(0.225, 0.224,
                                                              0.229)))

    # optimizer setup
    base_lr = args.lr
    tmp_lr = base_lr
    optimizer = optim.SGD(model.parameters(),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)

    max_epoch = cfg['max_epoch']
    epoch_size = len(dataset) // args.batch_size

    # start training loop
    t0 = time.time()

    for epoch in range(max_epoch):

        # use cos lr
        if args.cos and epoch > 20 and epoch <= max_epoch - 20:
            # use cos lr
            tmp_lr = 0.00001 + 0.5 * (base_lr - 0.00001) * (
                1 + math.cos(math.pi * (epoch - 20) * 1. / (max_epoch - 20)))
            set_lr(optimizer, tmp_lr)

        elif args.cos and epoch > max_epoch - 20:
            tmp_lr = 0.00001
            set_lr(optimizer, tmp_lr)

        # use step lr
        else:
            if epoch in cfg['lr_epoch']:
                tmp_lr = tmp_lr * 0.1
                set_lr(optimizer, tmp_lr)

        # COCO evaluation
        if (epoch + 1) % args.eval_epoch == 0:
            model.trainable = False
            model.set_grid(cfg['min_dim'])
            # evaluate
            ap50_95, ap50 = evaluator.evaluate(model)
            print('ap50 : ', ap50)
            print('ap50_95 : ', ap50_95)
            # convert to training mode.
            model.trainable = True
            model.set_grid(input_size)
            model.train()
            if args.tfboard:
                writer.add_scalar('val/COCOAP50', ap50, epoch + 1)
                writer.add_scalar('val/COCOAP50_95', ap50_95, epoch + 1)

        for iter_i, (images, targets) in enumerate(dataloader):
            # WarmUp strategy for learning rate
            if not args.no_warm_up:
                if epoch < args.wp_epoch:
                    # tmp_lr = base_lr * pow((iter_i+epoch*epoch_size)*1. / (args.wp_epoch*epoch_size), 4)
                    tmp_lr = 1e-6 + (base_lr - 1e-6) * (
                        iter_i + epoch * epoch_size) / (epoch_size *
                                                        (args.wp_epoch))
                    set_lr(optimizer, tmp_lr)

                elif epoch == args.wp_epoch and iter_i == 0:
                    tmp_lr = base_lr
                    set_lr(optimizer, tmp_lr)

            targets = [label.tolist() for label in targets]
            if args.version == 'yolo_v2' or args.version == 'tiny_yolo_v2':
                targets = tools.gt_creator(input_size,
                                           yolo_net.stride,
                                           targets,
                                           name='COCO')
            elif args.version == 'yolo_v3' or args.version == 'tiny_yolo_v3':
                targets = tools.multi_gt_creator(input_size,
                                                 yolo_net.stride,
                                                 targets,
                                                 name='COCO')

            # to device
            images = images.to(device)
            targets = torch.tensor(targets).float().to(device)

            # forward and loss
            conf_loss, cls_loss, txtytwth_loss, total_loss = model(
                images, target=targets)

            # backprop
            total_loss.backward()
            optimizer.step()
            optimizer.zero_grad()

            if args.tfboard:
                # viz loss
                writer.add_scalar('object loss', conf_loss.item(),
                                  iter_i + epoch * epoch_size)
                writer.add_scalar('class loss', cls_loss.item(),
                                  iter_i + epoch * epoch_size)
                writer.add_scalar('local loss', txtytwth_loss.item(),
                                  iter_i + epoch * epoch_size)

            if iter_i % 10 == 0:

                t1 = time.time()
                print(
                    '[Epoch %d/%d][Iter %d/%d][lr %.6f]'
                    '[Loss: obj %.2f || cls %.2f || bbox %.2f || total %.2f || size %d || time: %.2f]'
                    % (epoch + 1, max_epoch, iter_i, epoch_size, tmp_lr,
                       conf_loss.item(), cls_loss.item(), txtytwth_loss.item(),
                       total_loss.item(), input_size[0], t1 - t0),
                    flush=True)

                t0 = time.time()

            # multi-scale trick
            if iter_i % 10 == 0 and iter_i > 0 and args.multi_scale:
                # ms_ind = random.sample(ms_inds, 1)[0]
                # input_size = cfg['multi_scale'][int(ms_ind)]
                size = random.randint(10, 19) * 32
                input_size = [size, size]
                model.set_grid(input_size)

                # change input dim
                # But this operation will report bugs when we use more workers in data loader, so I have to use 0 workers.
                # I don't know how to make it suit more workers, and I'm trying to solve this question.
                dataloader.dataset.reset_transform(
                    SSDAugmentation(input_size,
                                    mean=(0.406, 0.456, 0.485),
                                    std=(0.225, 0.224, 0.229)))

        if (epoch + 1) % 10 == 0:
            print('Saving state, epoch:', epoch + 1)
            torch.save(
                model.state_dict(),
                os.path.join(path_to_save,
                             args.version + '_' + repr(epoch + 1) + '.pth'))