コード例 #1
0
ファイル: n_model.py プロジェクト: clover3/Chair
    def model_fn(features, labels, mode, params):
        code_id = features[str_code_id]
        token_ids = features[str_desc_tokens]

        #mode = tf.estimator.ModeKeys.TRAIN
        loss = build_model(code_id, token_ids, dim, max_seq, n_input_voca,
                           n_output_voca)
        #logging_hook = tf.train.LoggingTensorHook({"loss": loss}, every_n_iter=1)
        logging_hook = _LoggerHook(loss, 1)
        num_train_step = 1000
        train_op = create_optimizer(loss, lr, num_train_step, 0, False)
        return tf.estimator.EstimatorSpec(mode=mode,
                                          loss=loss,
                                          train_op=train_op)
コード例 #2
0
ファイル: pretrain_ibert.py プロジェクト: clover3/Chair
    def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
        """The `model_fn` for TPUEstimator."""

        tf.logging.info("*** Features ***")
        for name in sorted(features.keys()):
            tf.logging.info("  name = %s, shape = %s" %
                            (name, features[name].shape))

        input_ids = features["input_ids"]
        input_mask = features["input_mask"]
        voca_mask = features["voca_mask"]
        segment_ids = features["segment_ids"]
        masked_lm_positions = features["masked_lm_positions"]
        masked_lm_ids = features["masked_lm_ids"]
        masked_lm_weights = features["masked_lm_weights"]
        next_sentence_labels = features["next_sentence_labels"]
        is_training = (mode == tf.estimator.ModeKeys.TRAIN)
        model = modeling.IBertModel(
            config=bert_config,
            is_training=is_training,
            input_ids=input_ids,
            input_mask=input_mask,
            voca_mask=voca_mask,
            token_type_ids=segment_ids,
            use_one_hot_embeddings=use_one_hot_embeddings,
        )

        (masked_lm_loss, masked_lm_example_loss,
         masked_lm_log_probs) = get_masked_lm_output(
             bert_config, model.get_sequence_output(),
             model.get_embedding_table(), masked_lm_positions, masked_lm_ids,
             masked_lm_weights)

        (next_sentence_loss, next_sentence_example_loss,
         next_sentence_log_probs) = get_next_sentence_output(
             bert_config, model.get_pooled_output(), next_sentence_labels)

        total_loss = masked_lm_loss + next_sentence_loss

        tvars = tf.trainable_variables()

        initialized_variable_names = {}
        scaffold_fn = None
        if init_checkpoint:
            (assignment_map, initialized_variable_names
             ) = modeling.get_assignment_map_from_checkpoint(
                 tvars, init_checkpoint)
            if use_tpu:

                def tpu_scaffold():
                    tf.train.init_from_checkpoint(init_checkpoint,
                                                  assignment_map)
                    return tf.train.Scaffold()

                scaffold_fn = tpu_scaffold
            else:
                tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

        tf.logging.info("**** Trainable Variables ****")
        for var in tvars:
            init_string = ""
            if var.name in initialized_variable_names:
                init_string = ", *INIT_FROM_CKPT*"
            tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                            init_string)

        output_spec = None
        if mode == tf.estimator.ModeKeys.TRAIN:
            train_op = optimization.create_optimizer(total_loss, learning_rate,
                                                     num_train_steps,
                                                     num_warmup_steps, use_tpu)

            output_spec = tf.contrib.tpu.TPUEstimatorSpec(
                mode=mode,
                loss=total_loss,
                train_op=train_op,
                scaffold_fn=scaffold_fn)
        elif mode == tf.estimator.ModeKeys.EVAL:

            def metric_fn(masked_lm_example_loss, masked_lm_log_probs,
                          masked_lm_ids, masked_lm_weights,
                          next_sentence_example_loss, next_sentence_log_probs,
                          next_sentence_labels):
                """Computes the loss and accuracy of the model."""
                masked_lm_log_probs = tf.reshape(
                    masked_lm_log_probs, [-1, masked_lm_log_probs.shape[-1]])
                masked_lm_predictions = tf.argmax(masked_lm_log_probs,
                                                  axis=-1,
                                                  output_type=tf.int32)
                masked_lm_example_loss = tf.reshape(masked_lm_example_loss,
                                                    [-1])
                masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
                masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
                masked_lm_accuracy = tf.metrics.accuracy(
                    labels=masked_lm_ids,
                    predictions=masked_lm_predictions,
                    weights=masked_lm_weights)
                masked_lm_mean_loss = tf.metrics.mean(
                    values=masked_lm_example_loss, weights=masked_lm_weights)

                next_sentence_log_probs = tf.reshape(
                    next_sentence_log_probs,
                    [-1, next_sentence_log_probs.shape[-1]])
                next_sentence_predictions = tf.argmax(next_sentence_log_probs,
                                                      axis=-1,
                                                      output_type=tf.int32)
                next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
                next_sentence_accuracy = tf.metrics.accuracy(
                    labels=next_sentence_labels,
                    predictions=next_sentence_predictions)
                next_sentence_mean_loss = tf.metrics.mean(
                    values=next_sentence_example_loss)

                return {
                    "masked_lm_accuracy": masked_lm_accuracy,
                    "masked_lm_loss": masked_lm_mean_loss,
                    "next_sentence_accuracy": next_sentence_accuracy,
                    "next_sentence_loss": next_sentence_mean_loss,
                }

            eval_metrics = (metric_fn, [
                masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
                masked_lm_weights, next_sentence_example_loss,
                next_sentence_log_probs, next_sentence_labels
            ])
            output_spec = tf.contrib.tpu.TPUEstimatorSpec(
                mode=mode,
                loss=total_loss,
                eval_metrics=eval_metrics,
                scaffold_fn=scaffold_fn)
        else:
            raise ValueError("Only TRAIN and EVAL modes are supported: %s" %
                             (mode))

        return output_spec
コード例 #3
0
ファイル: train_nli.py プロジェクト: clover3/Chair
    def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
        """The `model_fn` for TPUEstimator."""

        tf.logging.info("*** Features ***")
        for name in sorted(features.keys()):
            tf.logging.info("  name = %s, shape = %s" %
                            (name, features[name].shape))

        input_ids = features["input_ids"]
        input_mask = features["input_mask"]
        segment_ids = features["segment_ids"]
        label_ids = features["label_ids"]
        is_real_example = None
        if "is_real_example" in features:
            is_real_example = tf.cast(features["is_real_example"],
                                      dtype=tf.float32)
        else:
            is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)

        is_training = (mode == tf.estimator.ModeKeys.TRAIN)

        (total_loss, per_example_loss, logits,
         probabilities) = create_model(bert_config, is_training, input_ids,
                                       input_mask, segment_ids, label_ids,
                                       num_labels, use_one_hot_embeddings)

        tvars = tf.trainable_variables()
        initialized_variable_names = {}
        scaffold_fn = None
        if init_checkpoint:
            (assignment_map, initialized_variable_names
             ) = modeling.get_assignment_map_from_checkpoint(
                 tvars, init_checkpoint)
            if use_tpu:

                def tpu_scaffold():
                    tf.train.init_from_checkpoint(init_checkpoint,
                                                  assignment_map)
                    return tf.train.Scaffold()

                scaffold_fn = tpu_scaffold
            else:
                tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

        tf.logging.info("**** Trainable Variables ****")
        for var in tvars:
            init_string = ""
            if var.name in initialized_variable_names:
                init_string = ", *INIT_FROM_CKPT*"
            tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                            init_string)

        output_spec = None
        if mode == tf.estimator.ModeKeys.TRAIN:

            train_op = optimization.create_optimizer(total_loss, learning_rate,
                                                     num_train_steps,
                                                     num_warmup_steps, use_tpu)

            output_spec = tf.contrib.tpu.TPUEstimatorSpec(
                mode=mode,
                loss=total_loss,
                train_op=train_op,
                scaffold_fn=scaffold_fn)
        elif mode == tf.estimator.ModeKeys.EVAL:

            def metric_fn(per_example_loss, label_ids, logits,
                          is_real_example):
                predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
                accuracy = tf.metrics.accuracy(labels=label_ids,
                                               predictions=predictions,
                                               weights=is_real_example)
                loss = tf.metrics.mean(values=per_example_loss,
                                       weights=is_real_example)
                return {
                    "eval_accuracy": accuracy,
                    "eval_loss": loss,
                }

            eval_metrics = (metric_fn, [
                per_example_loss, label_ids, logits, is_real_example
            ])
            output_spec = tf.contrib.tpu.TPUEstimatorSpec(
                mode=mode,
                loss=total_loss,
                eval_metrics=eval_metrics,
                scaffold_fn=scaffold_fn)
        else:
            output_spec = tf.contrib.tpu.TPUEstimatorSpec(
                mode=mode,
                predictions={"probabilities": probabilities},
                scaffold_fn=scaffold_fn)
        return output_spec