def load_model(checkpoint_file): checkpoint = torch.load(checkpoint_file) args = checkpoint['args'] model = UnetModel(1, 1, args.num_chans, args.num_pools, args.drop_prob).to(args.device) if args.data_parallel: model = torch.nn.DataParallel(model) model.load_state_dict(checkpoint['model']) return model
def load_model(checkpoint_file): checkpoint = torch.load(checkpoint_file) args = checkpoint['args'] model = UnetModel(in_chans=1, out_chans=1, chans=args.num_chans, num_pool_layers=args.num_pools, drop_prob=args.drop_prob, acceleration=args.accelerations, center_fraction=args.center_fractions, res=args.resolution).to(args.device) if args.data_parallel: model = torch.nn.DataParallel(model) model.load_state_dict(checkpoint['model']) return model