コード例 #1
0
 def _make_stem_layer(self, in_channels, stem_channels):
     if self.deep_stem:
         self.stem = nn.Sequential(
             build_conv_layer(
                 self.conv_cfg,
                 in_channels,
                 stem_channels // 2,
                 kernel_size=3,
                 stride=2,
                 padding=1,
                 bias=False),
             build_norm_layer(self.norm_cfg, stem_channels // 2)[1],
             nn.ReLU(inplace=True),
             build_conv_layer(
                 self.conv_cfg,
                 stem_channels // 2,
                 stem_channels // 2,
                 kernel_size=3,
                 stride=1,
                 padding=1,
                 bias=False),
             build_norm_layer(self.norm_cfg, stem_channels // 2)[1],
             nn.ReLU(inplace=True),
             build_conv_layer(
                 self.conv_cfg,
                 stem_channels // 2,
                 stem_channels,
                 kernel_size=3,
                 stride=1,
                 padding=1,
                 bias=False),
             build_norm_layer(self.norm_cfg, stem_channels)[1],
             nn.ReLU(inplace=True))
     else:
         self.conv1 = build_conv_layer(
             self.conv_cfg,
             in_channels,
             stem_channels,
             kernel_size=7,
             stride=2,
             padding=3,
             bias=False)
         self.norm1_name, norm1 = build_norm_layer(
             self.norm_cfg, stem_channels, postfix=1)
         self.add_module(self.norm1_name, norm1)
         self.relu = nn.ReLU(inplace=True)
     self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
コード例 #2
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 dcn=None,
                 plugins=None):
        super(SimplifiedBasicBlock, self).__init__()
        assert dcn is None, 'Not implemented yet.'
        assert plugins is None, 'Not implemented yet.'
        assert not with_cp, 'Not implemented yet.'
        self.with_norm = norm_cfg is not None
        with_bias = True if norm_cfg is None else False
        self.conv1 = build_conv_layer(
            conv_cfg,
            inplanes,
            planes,
            3,
            stride=stride,
            padding=dilation,
            dilation=dilation,
            bias=with_bias)
        if self.with_norm:
            self.norm1_name, norm1 = build_norm_layer(
                norm_cfg, planes, postfix=1)
            self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(
            conv_cfg, planes, planes, 3, padding=1, bias=with_bias)
        if self.with_norm:
            self.norm2_name, norm2 = build_norm_layer(
                norm_cfg, planes, postfix=2)
            self.add_module(self.norm2_name, norm2)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
        self.with_cp = with_cp
コード例 #3
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 dcn=None,
                 plugins=None):
        """Bottleneck block for ResNet.

        If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
        it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottleneck, self).__init__()
        assert style in ['pytorch', 'caffe']
        assert dcn is None or isinstance(dcn, dict)
        assert plugins is None or isinstance(plugins, list)
        if plugins is not None:
            allowed_position = ['after_conv1', 'after_conv2', 'after_conv3']
            assert all(p['position'] in allowed_position for p in plugins)

        self.inplanes = inplanes
        self.planes = planes
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.dcn = dcn
        self.with_dcn = dcn is not None
        self.plugins = plugins
        self.with_plugins = plugins is not None

        if self.with_plugins:
            # collect plugins for conv1/conv2/conv3
            self.after_conv1_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv1'
            ]
            self.after_conv2_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv2'
            ]
            self.after_conv3_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv3'
            ]

        if self.style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            norm_cfg, planes * self.expansion, postfix=3)

        self.conv1 = build_conv_layer(
            conv_cfg,
            inplanes,
            planes,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        fallback_on_stride = False
        if self.with_dcn:
            fallback_on_stride = dcn.pop('fallback_on_stride', False)
        if not self.with_dcn or fallback_on_stride:
            self.conv2 = build_conv_layer(
                conv_cfg,
                planes,
                planes,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation,
                bias=False)
        else:
            assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
            self.conv2 = build_conv_layer(
                dcn,
                planes,
                planes,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation,
                bias=False)

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(
            conv_cfg,
            planes,
            planes * self.expansion,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
コード例 #4
0
    def __init__(self,
                 block,
                 inplanes,
                 planes,
                 num_blocks,
                 stride=1,
                 avg_down=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 downsample_first=True,
                 **kwargs):
        self.block = block

        downsample = None
        if stride != 1 or inplanes != planes * block.expansion:
            downsample = []
            conv_stride = stride
            if avg_down:
                conv_stride = 1
                downsample.append(
                    nn.AvgPool2d(
                        kernel_size=stride,
                        stride=stride,
                        ceil_mode=True,
                        count_include_pad=False))
            downsample.extend([
                build_conv_layer(
                    conv_cfg,
                    inplanes,
                    planes * block.expansion,
                    kernel_size=1,
                    stride=conv_stride,
                    bias=False),
                build_norm_layer(norm_cfg, planes * block.expansion)[1]
            ])
            downsample = nn.Sequential(*downsample)

        layers = []
        if downsample_first:
            layers.append(
                block(
                    inplanes=inplanes,
                    planes=planes,
                    stride=stride,
                    downsample=downsample,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    **kwargs))
            inplanes = planes * block.expansion
            for _ in range(1, num_blocks):
                layers.append(
                    block(
                        inplanes=inplanes,
                        planes=planes,
                        stride=1,
                        conv_cfg=conv_cfg,
                        norm_cfg=norm_cfg,
                        **kwargs))

        else:  # downsample_first=False is for HourglassModule
            for _ in range(num_blocks - 1):
                layers.append(
                    block(
                        inplanes=inplanes,
                        planes=inplanes,
                        stride=1,
                        conv_cfg=conv_cfg,
                        norm_cfg=norm_cfg,
                        **kwargs))
            layers.append(
                block(
                    inplanes=inplanes,
                    planes=planes,
                    stride=stride,
                    downsample=downsample,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    **kwargs))
        super(ResLayer, self).__init__(*layers)