コード例 #1
0
ファイル: yolo_detector.py プロジェクト: ctorney/wildFront
    def __init__(self, width, height, wt_file):
        self.width = int(round(width / self.base) * self.base)
        self.height = int(round(height / self.base) * self.base)
        self.weight_file = wt_file

        self.model = get_yolo_model(self.width,
                                    self.height,
                                    num_class=1,
                                    features=True)
        self.model.load_weights(self.weight_file, by_name=True)
コード例 #2
0
 def __init__(self, width, height, wt_file, obj_threshold=0.001, nms_threshold=0.5, max_length=256):
     # YOLO dimensions have to be a multiple of 32 so we'll choose the closest multiple to the image
     self.width = int(round(width / self.base) * self.base)
     self.height = int(round(height / self.base) * self.base)
     self.weight_file = wt_file
     
     self.obj_threshold = obj_threshold
     self.nms_threshold = nms_threshold
     self.max_length = max_length
     
     self.model = get_yolo_model(self.width, self.height, num_class=1)
     self.model.load_weights(self.weight_file,by_name=True)
コード例 #3
0
#Open the video file which needs to be processed
root = tk.Tk()
movieName = askopenfilename(
    initialdir=
    '/media/aakanksha/f41d5ac2-703c-4b56-a960-cd3a54f21cfb/aakanksha/Documents/Backup/Phd/Analysis/Videos/',
    filetypes=[("Video files", "*")])
cap = cv2.VideoCapture(movieName)
nframe = cap.get(cv2.CAP_PROP_FRAME_COUNT)
step = 500
im_width = 3840  #1920#864
im_height = 2176  #1088#864
obj_threshold = 0.5
max_length = 256
weight_file = '/media/aakanksha/f41d5ac2-703c-4b56-a960-cd3a54f21cfb/aakanksha/Documents/Backup/Phd/Analysis/blackbuckML/yoloTracker/weights/compare-blackbucks-yolo.h5'
model = get_yolo_model(im_width, im_height, num_class=1)
model.load_weights(weight_file, by_name=True)
im_num = 0
width = 3840  #1920
height = 2176  #1080
count = 0
#video = cv2.VideoWriter('/media/aakanksha/f41d5ac2-703c-4b56-a960-cd3a54f21cfb/aakanksha/Documents/Backup/Phd/Analysis/blackbuckML/testOut/video.avi',-1,1,(im_width,im_height))

while (cap.isOpened()):

    if (cv2.waitKey(1) & 0xFF == ord('q')) | (count > 32):
        break
    cap.set(cv2.CAP_PROP_POS_FRAMES, im_num)
    ret, img = cap.read()
    im_num += step
    image_h, image_w, _ = img.shape
コード例 #4
0
ファイル: train.py プロジェクト: aakanksharathore/yoloTracker
def main(argv):
    if (len(sys.argv) != 3):
        print('Usage ./train.py [root_dir] [config.yml]')
        sys.exit(1)
    #Load data
    root_dir = argv[1] + '/'  #in case we forgot
    print('Opening file' + root_dir + argv[2])
    with open(root_dir + argv[2], 'r') as configfile:
        config = yaml.safe_load(configfile)

    image_dir = root_dir + config['data_dir']
    train_dir = root_dir + config['data_dir']
    train_image_folder = root_dir + config['data_dir']
    weights_dir = root_dir + config['weights_dir']
    your_weights = weights_dir + config['specific_weights']
    generic_weights = weights_dir + config['generic_weights']
    trained_weights = weights_dir + config['trained_weights']
    list_of_train_file = train_dir + config['checked_annotations_fname']
    list_of_train_files = '/annotations-checked.yml'
    train_files_regex = config['generic_train_files_regex']

    FINE_TUNE = config['FINE_TUNE']
    TEST_RUN = config['TEST_RUN']
    LABELS = config['LABELS']
    IMAGE_H = config['IMAGE_H']
    IMAGE_W = config['IMAGE_W']
    NO_OBJECT_SCALE = config['NO_OBJECT_SCALE']
    OBJECT_SCALE = config['OBJECT_SCALE']
    COORD_SCALE = config['COORD_SCALE']
    CLASS_SCALE = config['CLASS_SCALE']

    valid_image_folder = train_image_folder
    valid_annot_folder = train_image_folder

    if FINE_TUNE:
        BATCH_SIZE = 4
        if TEST_RUN:
            EPOCHS = 1
        else:
            EPOCHS = 100
        model = get_yolo_model(IMAGE_W,
                               IMAGE_H,
                               num_class=1,
                               headtrainable=True,
                               trainable=True)
        model.load_weights(your_weights)
    else:
        BATCH_SIZE = 32
        EPOCHS = 500
        model = get_yolo_model(IMAGE_W,
                               IMAGE_H,
                               num_class=1,
                               headtrainable=True)
        model.load_weights(generic_weights, by_name=True)

    ### read saved pickle of parsed annotations
    with open(train_image_folder + list_of_train_files, 'r') as fp:
        all_imgs = yaml.load(fp)

    print('Reading YaML file finished. Time to luck and load!\n')

    num_ims = len(all_imgs)
    indexes = np.arange(num_ims)
    random.shuffle(indexes)

    num_val = 0  #num_ims//10

    #valid_imgs = list(itemgetter(*indexes[:num_val].tolist())(all_imgs))
    train_imgs = list(itemgetter(*indexes[num_val:].tolist())(all_imgs))
    train_batch = BatchGenerator(instances=train_imgs,
                                 labels=LABELS,
                                 batch_size=BATCH_SIZE,
                                 shuffle=True,
                                 jitter=0.0,
                                 im_dir=train_image_folder)

    #valid_batch = BatchGenerator(valid_imgs, generator_config, norm=normalize, jitter=False)

    def yolo_loss(y_true, y_pred):
        # compute grid factor and net factor
        grid_h = tf.shape(y_true)[1]
        grid_w = tf.shape(y_true)[2]

        grid_factor = tf.reshape(tf.cast([grid_w, grid_h], tf.float32),
                                 [1, 1, 1, 1, 2])

        net_h = IMAGE_H / grid_h
        net_w = IMAGE_W / grid_w
        net_factor = tf.reshape(tf.cast([net_w, net_h], tf.float32),
                                [1, 1, 1, 1, 2])

        pred_box_xy = y_pred[..., 0:2]  # t_wh
        pred_box_wh = tf.log(y_pred[..., 2:4])  # t_wh
        pred_box_conf = tf.expand_dims(y_pred[..., 4], 4)
        pred_box_class = y_pred[..., 5:]  # adjust class probabilities
        # initialize the masks
        object_mask = tf.expand_dims(y_true[..., 4], 4)

        true_box_xy = y_true[..., 0:2]  # (sigma(t_xy) + c_xy)
        true_box_wh = tf.where(y_true[..., 2:4] > 0,
                               tf.log(tf.cast(y_true[..., 2:4], tf.float32)),
                               y_true[..., 2:4])
        true_box_conf = tf.expand_dims(y_true[..., 4], 4)
        true_box_class = y_true[..., 5:]

        xy_delta = COORD_SCALE * object_mask * (pred_box_xy - true_box_xy
                                                )  #/net_factor #* xywh_scale
        wh_delta = COORD_SCALE * object_mask * (pred_box_wh - true_box_wh
                                                )  #/ net_factor #* xywh_scale

        obj_delta = OBJECT_SCALE * object_mask * (pred_box_conf -
                                                  true_box_conf)
        no_obj_delta = NO_OBJECT_SCALE * (1 - object_mask) * pred_box_conf
        class_delta = CLASS_SCALE * object_mask * (pred_box_class -
                                                   true_box_class)

        loss_xy = tf.reduce_sum(tf.square(xy_delta), list(range(1, 5)))
        loss_wh = tf.reduce_sum(tf.square(wh_delta), list(range(1, 5)))
        loss_obj = tf.reduce_sum(tf.square(obj_delta), list(range(1, 5)))
        lossnobj = tf.reduce_sum(tf.square(no_obj_delta), list(range(1, 5)))
        loss_cls = tf.reduce_sum(tf.square(class_delta), list(range(1, 5)))

        loss = loss_xy + loss_wh + loss_obj + lossnobj + loss_cls
        return loss

    print('Prepared bathes now we will load weights')
    wt_file = your_weights
    optimizer = Adam(lr=0.5e-4,
                     beta_1=0.9,
                     beta_2=0.999,
                     epsilon=1e-08,
                     decay=0.0)
    model.compile(loss=yolo_loss, optimizer=optimizer)

    early_stop = EarlyStopping(monitor='loss',
                               min_delta=0.001,
                               patience=5,
                               mode='min',
                               verbose=1)
    checkpoint = ModelCheckpoint(wt_file,
                                 monitor='loss',
                                 verbose=1,
                                 save_best_only=True,
                                 mode='min',
                                 period=1)

    print('Training starts.')
    start = time.time()
    model.fit_generator(
        generator=train_batch,
        steps_per_epoch=len(train_batch),
        epochs=EPOCHS,
        verbose=1,
        #        validation_data  = valid_batch,
        #        validation_steps = len(valid_batch),
        callbacks=[checkpoint, early_stop],  #, tensorboard], 
        max_queue_size=3)
    model.save_weights(trained_weights)
    end = time.time()
    print('Training took ' + str(end - start) + ' seconds')
    print('Weights saved to ' + trained_weights)
    print("Finished! :o)")
コード例 #5
0
def main(argv):
    if (len(sys.argv) != 3):
        print('Usage ./makeTrainCoco.py [root_dir] [config.yml]')
        sys.exit(1)
    #Load data
    root_dir = argv[1] + '/'  #in case we forgot
    print('Opening file' + root_dir + argv[2])
    with open(root_dir + argv[2], 'r') as configfile:
        config = yaml.safe_load(configfile)

    image_dir = root_dir + config['data_dir']
    train_dir = root_dir + config['data_dir']
    weights_dir = root_dir + config['weights_dir']
    your_weights = weights_dir + config['generic_weights']
    annotations_file = train_dir + config['untrained_annotations_fname']
    train_files_regex = config['generic_train_files_regex']

    train_images = glob.glob(image_dir + train_files_regex)

    max_l = 100
    min_l = 10

    im_size = 864  #size of training imageas for yolo

    ##################################################
    #im_size=416 #size of training imageas for yolo
    yolov3 = get_yolo_model(im_size, im_size, trainable=False)
    yolov3.load_weights(your_weights, by_name=True)

    ########################################
    im_num = 1
    all_imgs = []
    for imagename in train_images:
        im = cv2.imread(imagename)
        print('processing image ' + imagename + ', ' + str(im_num) + ' of ' +
              str(len(train_images)) + '...')
        height, width = im.shape[:2]
        im_num += 1

        n_count = 0
        for x in np.arange(0, width - im_size, im_size):
            for y in np.arange(0, height - im_size, im_size):
                img_data = {
                    'object': []
                }  #dictionary? key-value pair to store image data
                head, tail = os.path.split(imagename)
                noext, ext = os.path.splitext(tail)
                save_name = train_dir + '/TR_' + noext + '-' + str(
                    n_count) + '.png'
                box_name = train_dir + '/bbox/' + noext + '-' + str(
                    n_count) + '.png'
                img = im[y:y + im_size, x:x + im_size, :]
                cv2.imwrite(save_name, img)
                img_data['filename'] = save_name
                img_data['width'] = im_size
                img_data['height'] = im_size
                n_count += 1
                # use the yolov3 model to predict 80 classes on COCO

                # preprocess the image
                image_h, image_w, _ = img.shape
                new_image = img[:, :, ::-1] / 255.
                new_image = np.expand_dims(new_image, 0)

                # run the prediction
                yolos = yolov3.predict(new_image)

                boxes = decode(yolos, obj_thresh=0.005, nms_thresh=0.5)
                for b in boxes:
                    xmin = int(b[0])
                    xmax = int(b[2])
                    ymin = int(b[1])
                    ymax = int(b[3])
                    obj = {}

                    obj['name'] = 'aoi'

                    if xmin < 0: continue
                    if ymin < 0: continue
                    if xmax > im_size: continue
                    if ymax > im_size: continue
                    if (xmax - xmin) < min_l: continue
                    if (xmax - xmin) > max_l: continue
                    if (ymax - ymin) < min_l: continue
                    if (ymax - ymin) > max_l: continue

                    obj['xmin'] = xmin
                    obj['ymin'] = ymin
                    obj['xmax'] = xmax
                    obj['ymax'] = ymax
                    img_data['object'] += [obj]
                    cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0),
                                  2)

                cv2.imwrite(box_name, img)
                all_imgs += [img_data]

    #print(all_imgs)
    print('Saving data to ' + annotations_file)
    with open(annotations_file, 'w') as handle:
        yaml.dump(all_imgs, handle)

    print('Finished! :o)')
コード例 #6
0
def main(argv):
    if (len(sys.argv) != 3):
        print('Usage ./makeTrain.py [root_dir] [config.yml]')
        sys.exit(1)
    #Load data
    root_dir = argv[1] + '/'  #in case we forgot
    print('Opening file' + root_dir + argv[2])
    with open(root_dir + argv[2], 'r') as configfile:
        config = yaml.safe_load(configfile)

    image_dir = root_dir + config['data_dir']
    train_dir = root_dir + config['data_dir']
    your_weights = root_dir + config['weights_dir'] + config['specific_weights']
    trained_annotations_fname = train_dir + config['trained_annotations_fname']
    train_files_regex = config['specific_train_files_regex']

    train_images = glob.glob(train_dir + train_files_regex)
    shuffle(train_images)

    max_l = 100
    min_l = 10

    im_size = 864  #size of training imageas for yolo

    ##################################################
    #im_size=416 #size of training imageas for yolo
    yolov3 = get_yolo_model(im_size, im_size, num_class=1, trainable=False)
    yolov3.load_weights(your_weights)

    ########################################
    im_num = 1
    all_imgs = []
    for imagename in train_images:
        img = cv2.imread(imagename)
        print('processing image ' + imagename + ', ' + str(im_num) + ' of ' +
              str(len(train_images)) + '...')
        im_num += 1

        img_data = {
            'object': []
        }  #dictionary? key-value pair to store image data
        head, tail = os.path.split(imagename)
        noext, ext = os.path.splitext(tail)
        box_name = train_dir + '/bbox/' + tail
        img_data['filename'] = tail
        img_data['width'] = im_size
        img_data['height'] = im_size

        # use the trained yolov3 model to predict

        # preprocess the image
        image_h, image_w, _ = img.shape
        new_image = img[:, :, ::-1] / 255.
        new_image = np.expand_dims(new_image, 0)

        # run the prediction
        yolos = yolov3.predict(new_image)

        boxes = decode(yolos, obj_thresh=0.2, nms_thresh=0.3)
        for b in boxes:
            xmin = int(b[0])
            xmax = int(b[2])
            ymin = int(b[1])
            ymax = int(b[3])
            obj = {}

            obj['name'] = 'aoi'

            if xmin < 0: continue
            if ymin < 0: continue
            if xmax > im_size: continue
            if ymax > im_size: continue
            if (xmax - xmin) < min_l: continue
            if (xmax - xmin) > max_l: continue
            if (ymax - ymin) < min_l: continue
            if (ymax - ymin) > max_l: continue

            obj['xmin'] = xmin
            obj['ymin'] = ymin
            obj['xmax'] = xmax
            obj['ymax'] = ymax
            img_data['object'] += [obj]
            cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)

        cv2.imwrite(box_name, img)
        all_imgs += [img_data]

    #print(all_imgs)
    with open(trained_annotations_fname, 'w') as handle:
        yaml.dump(all_imgs, handle)
コード例 #7
0
CLASS_SCALE = 1.0

if FINE_TUNE:
    BATCH_SIZE = 4
else:
    BATCH_SIZE = 32

train_image_folder = 'train_images_1/'  #/home/ctorney/data/coco/train2014/'
train_annot_folder = 'train_images_1/'
valid_image_folder = train_image_folder  #'/home/ctorney/data/coco/val2014/'
valid_annot_folder = train_annot_folder  #'/home/ctorney/data/coco/val2014ann/'

if FINE_TUNE:
    model = get_yolo_model(IMAGE_W,
                           IMAGE_H,
                           num_class=1,
                           headtrainable=True,
                           trainable=True)
    model.load_weights('../weights/balloon-yolo.h5')
else:
    model = get_yolo_model(IMAGE_W, IMAGE_H, num_class=1, headtrainable=True)
    model.load_weights('../weights/yolo-v3-coco.h5', by_name=True)
#model = get_yolo_model(IMAGE_W,IMAGE_H, num_class=1,trainable=True)


def yolo_loss(y_true, y_pred):
    # compute grid factor and net factor
    grid_h = tf.shape(y_true)[1]
    grid_w = tf.shape(y_true)[2]

    grid_factor = tf.reshape(tf.cast([grid_w, grid_h], tf.float32),
コード例 #8
0
ファイル: processImages.py プロジェクト: ctorney/wildFront
width=4096
height=2160
width=865
height=865

im_size=864 #size of training imageas for yolo

nx = width//im_size
ny = height//im_size

##################################################
#im_size=416 #size of training imageas for yolo
#yolov3 = get_yolo_model(im_size,im_size,trainable=False)
#yolov3.load_weights('../../weights/yolo-v3-coco.h5',by_name=True)
yolov3 = get_yolo_model(im_size,im_size,num_class=1,trainable=False)
yolov3.load_weights('../../weights/balloon-yolo.h5',by_name=False)
print(yolov3.summary())
#im = cv2.imread('balloon.png')
#new_image = im[:,:,::-1]/255.
#new_image = np.expand_dims(new_image, 0)
#aa = np.tile(new_image, (2,1,1,1))

            # run the prediction
#yolos = yolov3.predict(aa)

#boxes = decode(yolos, im_size, 'predictions.png', im)
#sys.exit('bye!')


コード例 #9
0
ファイル: postTrainTest.py プロジェクト: ctorney/ungTracker
def main(argv):
    if(len(sys.argv) != 3):
        print('Usage ./postTrainTest.py [data_dir] [config.yml]')
        sys.exit(1)
    #Load data
    data_dir = argv[1]  + '/' #in case we forgot '/'
    print('Opening file' + argv[2])
    with open(argv[2], 'r') as configfile:
        config = yaml.safe_load(configfile)

    image_dir = data_dir
    train_dir = data_dir
    weights_dir = data_dir + config['weights_dir']

    #Training type dependent
    trained_weights = weights_dir + config['trained_weights']

    #based on get_yolo_model defaults and previous makTrain.py files
    num_class=config['specific']['num_class']
    obj_thresh=config['specific']['obj_thresh']
    nms_thresh=config['specific']['nms_thresh']

    list_of_train_files = config['checked_annotations_fname']

    annotations_file = train_dir + config['untrained_annotations_fname']
    with open (annotations_file, 'r') as fp:
        all_imgs = yaml.load(fp)

    max_l=config['MAX_L'] #maximal object size in pixels
    min_l=config['MIN_L']
    im_size=config['IMAGE_H'] #size of training imageas for yolo

    ##################################################
    print("Loading YOLO models")
    yolov3 = get_yolo_model(im_size,im_size,num_class,trainable=False)
    yolov3.load_weights(trained_weights,by_name=True) #TODO is by_name necessary here?
    print("YOLO models loaded, my dear.")
    ########################################

    #read in all images from checked annotations (GROUND TRUTH)
    for i in range(len(all_imgs)):
        basename = os.path.basename(all_imgs[i]['filename'])

        #remove extension from basename:
        name_seed_split = basename.split('.')[:-1]
        name_seed = '.'.join(name_seed_split)
        fname_gt = image_dir + "/groundtruths/" + name_seed + ".txt"
        fname_pred = image_dir + "/predictions/" + name_seed + ".txt"

        img_data = {'object':[]}
        img_data['filename'] = basename
        img_data['width'] = all_imgs[i]['width']
        img_data['height'] = all_imgs[i]['height']

        #Reading ground truth
        boxes_gt=[]
        for obj in all_imgs[i]['object']:
            boxes_gt.append([obj['xmin'],obj['ymin'],obj['xmax'],obj['ymax']])
        sys.stdout.write('GT objects:')
        sys.stdout.write(str(len(boxes_gt)))
        sys.stdout.flush()
        #do box processing
        img = cv2.imread(image_dir + basename)

        with open(fname_gt, 'w') as file_gt: #left top righ bottom
            for b in boxes_gt:
                obj = {}
                if ((b[2]-b[0])*(b[3]-b[1]))<10:
                    continue
                obj['name'] = 'aoi'
                obj['xmin'] = int(b[0])
                obj['ymin'] = int(b[1])
                obj['xmax'] = int(b[2])
                obj['ymax'] = int(b[3])
                img_data['object'] += [obj]
                file_gt.write(obj['name'] + " " )
                file_gt.write(str(obj['xmin']) + " " )
                file_gt.write(str(obj['ymin']) + " " )
                file_gt.write(str(obj['xmax']) + " " )
                file_gt.write(str(obj['ymax']))
                file_gt.write('\n')

        # preprocess the image
        image_h, image_w, _ = img.shape
        new_image = img[:,:,::-1]/255.
        new_image = np.expand_dims(new_image, 0)

        # run the prediction
        sys.stdout.write('Yolo predicting...')
        sys.stdout.flush()
        yolos = yolov3.predict(new_image)
        sys.stdout.write('decoding...')
        sys.stdout.flush()
        boxes_predict = decode(yolos, obj_thresh, nms_thresh)
        sys.stdout.write('done!#of boxes_predict:')
        sys.stdout.write(str(len(boxes_predict)))
        sys.stdout.write('\n')
        sys.stdout.flush()

        with open(fname_pred, 'w') as file_pred: #left top righ bottom
            for b in boxes_predict:
                xmin=int(b[0])
                xmax=int(b[2])
                ymin=int(b[1])
                ymax=int(b[3])
                confidence=float(b[4])
                objpred = {}

                objpred['name'] = 'aoi'

                if xmin<0: continue
                if ymin<0: continue
                if xmax>im_size: continue
                if ymax>im_size: continue
                if (xmax-xmin)<min_l: continue
                if (xmax-xmin)>max_l: continue
                if (ymax-ymin)<min_l: continue
                if (ymax-ymin)>max_l: continue

                objpred['xmin'] = xmin
                objpred['ymin'] = ymin
                objpred['xmax'] = xmax
                objpred['ymax'] = ymax
                objpred['confidence'] = confidence
                file_pred.write(objpred['name'] + " " )
                file_pred.write(str(objpred['confidence']) + " " )
                file_pred.write(str(objpred['xmin']) + " " )
                file_pred.write(str(objpred['ymin']) + " " )
                file_pred.write(str(objpred['xmax']) + " " )
                file_pred.write(str(objpred['ymax']))
                file_pred.write('\n')


        #precision = tp / (tp + fp)
        # for box_gt in boxes_gt:
        #     for box_predict in boxes_predict:
        #         iou_val = bbox_iou(box_predict,box_gt)
        #         print(iou_val)

    #count prediction which reache a threshold of let's say 0.5
    # if we cahnge the dection threshold I think we'll get ROC curve - that'd be cute.

    print('Finished! :o)')
コード例 #10
0
ファイル: train.py プロジェクト: ctorney/ungTracker
def main(argv):
    if(len(sys.argv) != 3):
        print('Usage ./train.py [data_dir] [config.yml]')
        sys.exit(1)
    #Load data
    data_dir = argv[1]  + '/' #in case we forgot '/'
    print('Opening file' + argv[2])
    with open(argv[2], 'r') as configfile:
        config = yaml.safe_load(configfile)

    #logging and debugging setup
    DEBUG = config['DEBUG']
    TEST_RUN = config['TEST_RUN']
    print(config)

    image_dir = data_dir
    train_dir = data_dir
    weights_dir = data_dir + config['weights_dir']
    train_image_folder = data_dir

    training_type = config['training_type']
    your_weights = weights_dir + config['specific']['weights']
    md5check(config['specific']['weights_md5'],your_weights)
    generic_weights = weights_dir + config['generic']['weights']
    md5check(config['generic']['weights_md5'],generic_weights)
    trained_weights = weights_dir + config['trained_weights']

    list_of_train_files = config['checked_annotations_fname']
    #list_of_train_files = '/annotations-checked.yml'
    train_files_regex = config['generic']['train_files_regex']

    training_phase = config['FINE_TUNE_PHASE']
    LABELS = config['LABELS']
    IMAGE_H = config['IMAGE_H']
    IMAGE_W = config['IMAGE_W']
    NO_OBJECT_SCALE  = config['NO_OBJECT_SCALE']
    OBJECT_SCALE  = config['OBJECT_SCALE']
    COORD_SCALE  = config['COORD_SCALE']
    CLASS_SCALE  = config['CLASS_SCALE']

    valid_image_folder = train_image_folder
    valid_annot_folder = train_image_folder



    BATCH_SIZE = config[training_phase]['BATCH_SIZE']
    EPOCHS = config[training_phase]['EPOCHS']
    LR = config[training_phase]['LR']
    input_weights = weights_dir + config[training_type]['weights']

    if TEST_RUN:
        EPOCHS=1
        BATCH_SIZE=4

    if training_phase=='phase_one':
        print("Fine tuning phase 1. Training top layers.")
        model = get_yolo_model(IMAGE_W,IMAGE_H, num_class=1,headtrainable=True)
        print("Loading weights %s",input_weights)
        model.load_weights(input_weights, by_name=True)
    else:
        print("Fine tuning phase 2. We retrain all layers with small learning rate")
        model = get_yolo_model(IMAGE_W,IMAGE_H, num_class=1,headtrainable=True, trainable=True)
        print("Loading weights %s",input_weights)
        model.load_weights(input_weights)

    if DEBUG:
        print(model.summary())

    ### read saved pickle of parsed annotations
    print("Loading images from %s",train_image_folder + list_of_train_files)
    with open (train_image_folder + list_of_train_files, 'r') as fp:
        all_imgs = yaml.load(fp)

    print('Reading YaML file finished. Time to lock and load!\n')

    num_ims = len(all_imgs)
    indexes = np.arange(num_ims)
    random.shuffle(indexes)

    num_val = 0 #num_ims//10 

    # valid_imgs = list(itemgetter(*indexes[:num_val].tolist())(all_imgs))
    # valid_batch = BatchGenerator(valid_imgs, labels= LABELS, jitter=False, im_dir= train_image_folder)
    train_imgs = list(itemgetter(*indexes[num_val:].tolist())(all_imgs))
    train_batch = BatchGenerator(instances= train_imgs,labels= LABELS,batch_size= BATCH_SIZE,shuffle= True,jitter= 0.0,im_dir= train_image_folder)


    def yolo_loss(y_true, y_pred):
        # compute grid factor and net factor
        grid_h      = tf.shape(y_true)[1]
        grid_w      = tf.shape(y_true)[2]

        grid_factor = tf.reshape(tf.cast([grid_w, grid_h], tf.float32), [1,1,1,1,2])

        net_h       = IMAGE_H/grid_h
        net_w       = IMAGE_W/grid_w
        net_factor  = tf.reshape(tf.cast([net_w, net_h], tf.float32), [1,1,1,1,2])

        pred_box_xy    = y_pred[..., 0:2]                                                       # t_wh
        pred_box_wh    = tf.log(y_pred[..., 2:4])                                                       # t_wh
        pred_box_conf  = tf.expand_dims(y_pred[..., 4], 4)
        pred_box_class = y_pred[..., 5:]                                            # adjust class probabilities      
        # initialize the masks
        object_mask     = tf.expand_dims(y_true[..., 4], 4)

        true_box_xy    = y_true[..., 0:2] # (sigma(t_xy) + c_xy)
        true_box_wh    = tf.where(y_true[...,2:4]>0, tf.log(tf.cast(y_true[..., 2:4],tf.float32)), y_true[...,2:4])
        true_box_conf  = tf.expand_dims(y_true[..., 4], 4)
        true_box_class = y_true[..., 5:]         

        xy_delta    = COORD_SCALE * object_mask   * (pred_box_xy-true_box_xy) #/net_factor #* xywh_scale
        wh_delta    = COORD_SCALE * object_mask   * (pred_box_wh-true_box_wh) #/ net_factor #* xywh_scale

        obj_delta  = OBJECT_SCALE * object_mask * (pred_box_conf-true_box_conf)  
        no_obj_delta = NO_OBJECT_SCALE * (1-object_mask) * pred_box_conf
        class_delta = CLASS_SCALE * object_mask * (pred_box_class-true_box_class)

        loss_xy = tf.reduce_sum(tf.square(xy_delta),       list(range(1,5))) 
        loss_wh = tf.reduce_sum(tf.square(wh_delta),       list(range(1,5))) 
        loss_obj= tf.reduce_sum(tf.square(obj_delta),     list(range(1,5))) 
        lossnobj= tf.reduce_sum(tf.square(no_obj_delta),     list(range(1,5))) 
        loss_cls= tf.reduce_sum(tf.square(class_delta),    list(range(1,5)))

        loss = loss_xy + loss_wh + loss_obj + lossnobj + loss_cls
        return loss



    print('Prepared batches now we will load weights')
    wt_file=input_weights
    optimizer = Adam(lr=LR, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
    model.compile(loss=yolo_loss, optimizer=optimizer, metrics=['accuracy'])

    early_stop = EarlyStopping(monitor='loss', min_delta=0.001,patience=5,mode='min',verbose=1)
    checkpoint = ModelCheckpoint(trained_weights + '_checkpoint' ,monitor='loss',verbose=1,save_best_only=True,mode='min',period=1)

    print('Training starts.')
    start = time.time()
    tensorboard = TensorBoard(log_dir="logs/{}".format(time.time()))

    model.fit_generator(generator        = train_batch,
                        steps_per_epoch  = len(train_batch),
                        epochs           = EPOCHS,
                        verbose          = 1,
                        # validation_data  = valid_batch,
                        # validation_steps = len(valid_batch),
                        callbacks        = [checkpoint, early_stop, tensorboard], 
                        max_queue_size   = 3)

    model.save_weights(trained_weights)
    end = time.time()
    print('Training took ' + str(end - start) + ' seconds')
    print('Weights saved to ' + trained_weights)
    print("Finished! :o)")
コード例 #11
0
ファイル: prepTrain.py プロジェクト: ctorney/ungTracker
def main(argv):
    if(len(sys.argv) != 3):
        print('Usage ./prepTrain.py [data_dir] [config.yml]')
        sys.exit(1)
    #Load data
    data_dir = argv[1]  + '/' #in case we forgot '/'
    print('Opening file' + argv[2])
    with open(argv[2], 'r') as configfile:
        config = yaml.safe_load(configfile)

    #TODO: since this is the first file to use, maybe add a check if all directories exist?

    image_dir = data_dir
    train_dir = data_dir
    weights_dir = data_dir + config['weights_dir']

    #Training type dependent
    training_type = config['training_type']
    print("Training type is " + training_type)
    print(config[training_type])
    your_weights = weights_dir + config[training_type]['weights']


    #check md5 of a weights file if available
    md5check(config[training_type]['weights_md5'],your_weights)


    train_files_regex = config[training_type]['train_files_regex']

    #based on get_yolo_model defaults and previous makTrain.py files
    num_class=config[training_type]['num_class']
    obj_thresh=config[training_type]['obj_thresh']
    nms_thresh=config[training_type]['nms_thresh']

    train_images =  glob.glob( image_dir + train_files_regex )
    annotations_file = train_dir + config['untrained_annotations_fname']

    max_l=config['MAX_L'] #maximal object size in pixels
    min_l=config['MIN_L']

    im_width=config['IMAGE_W'] #size of training imageas for yolo
    im_height=config['IMAGE_H']

    ##################################################
    print("Loading YOLO models")
    yolov3 = get_yolo_model(im_width,im_height,num_class,trainable=False)
    yolov3.load_weights(your_weights,by_name=True) #TODO is by_name necessary here?

    # Creating another model to provide visualisation and/or extraction of high level features

    yolov3_feats = get_yolo_model_feats(im_width,im_height,num_class,trainable=False)
    yolov3_feats.load_weights(your_weights,by_name=True) #TODO is by_name necessary here?


    print("YOLO models loaded, my dear.")
    ########################################
    im_num=1
    all_imgs = []
    for imagename in train_images:
        im = cv2.imread(imagename)
        print('processing image ' + imagename + ', ' + str(im_num) + ' of ' + str(len(train_images))  + '...')
        im_yolo = makeYoloCompatible(im)
        height, width = im_yolo.shape[:2]
        im_num+=1
        n_count=0

        for x in np.arange(0,1+width-im_width,im_width):#'1+' added to allow case when image has exactly size of one window
            for y in np.arange(0,1+height-im_height,im_height):
                img_data = {'object':[]}     #dictionary? key-value pair to store image data
                head, tail = os.path.split(imagename)
                noext, ext = os.path.splitext(tail)
                save_name = train_dir + '/TR_' + noext + '-' + str(n_count) + '.png'
                box_name = train_dir + '/bbox/' + noext + '-' + str(n_count) + '.png'
                img = im[y:y+im_height,x:x+im_width,:]
                cv2.imwrite(save_name, img)
                img_data['filename'] = save_name
                img_data['width'] = im_width
                img_data['height'] = im_height

                n_count+=1
                # use the yolov3 model to predict 80 classes on COCO

                # preprocess the image
                image_h, image_w, _ = img.shape
                new_image = img[:,:,::-1]/255.
                new_image = np.expand_dims(new_image, 0)

                # run the prediction
                sys.stdout.write('Yolo predicting...')
                sys.stdout.flush()
                yolos = yolov3.predict(new_image)

                # yolo_feats = yolov3_feats.predict(new_image)
                # print(type(yolo_feats))
                # print(type(yolo_feats[1]))
                # print(yolo_feats[1].shape)
                # print(yolo_feats[1].dtype)
                # fileObject = open("feats.pickle",'wb')
                # pickle.dump(yolo_feats[1],fileObject)
                # fileObject.close()
                # print("pickedleeee")
                # cv2.imshow("heatmap",yolo_feats[1][:,:,1])
                # k = cv2.waitKey(0)

                sys.stdout.write('Decoding...')
                sys.stdout.flush()
                boxes = decode(yolos, obj_thresh, nms_thresh)
                sys.stdout.write('Done!#of boxes:')
                sys.stdout.write(str(len(boxes)))
                sys.stdout.flush()
                for b in boxes:
                    xmin=int(b[0])
                    xmax=int(b[2])
                    ymin=int(b[1])
                    ymax=int(b[3])
                    obj = {}

                    obj['name'] = 'aoi'

                    if xmin<0: continue
                    if ymin<0: continue
                    if xmax>im_width: continue
                    if ymax>im_height: continue
                    if (xmax-xmin)<min_l: continue
                    if (xmax-xmin)>max_l: continue
                    if (ymax-ymin)<min_l: continue
                    if (ymax-ymin)>max_l: continue

                    obj['xmin'] = xmin
                    obj['ymin'] = ymin
                    obj['xmax'] = xmax
                    obj['ymax'] = ymax
                    img_data['object'] += [obj]
                    cv2.rectangle(img, (xmin,ymin), (xmax,ymax), (0,255,0), 2)

                cv2.imwrite(box_name, img)
                all_imgs += [img_data]


    #print(all_imgs)
    print('Saving data to ' + annotations_file)
    with open(annotations_file, 'w') as handle:
        yaml.dump(all_imgs, handle)

    print('Finished! :o)')