コード例 #1
0
ファイル: main.py プロジェクト: ywangc/Image-Super-Resolution
args = parser.parse_args()

path = args.imgpath
suffix = args.suffix

model_type = str(args.model).lower()
assert model_type in ["sr", "esr", "dsr", "ddsr", "rnsr"], 'Model type must be either "sr", "esr", "dsr", ' \
                                                           '"ddsr" or "rnsr"'

mode = str(args.mode).lower()
assert mode in ['fast', 'patch'], 'Mode of operation must be either "fast" or "patch"'

scale_factor = int(args.scale)
save = strToBool(args.save)

patch_size = int(args.patch_size)
assert patch_size > 0, "Patch size must be a positive integer"

if model_type == "sr":
    model = models.ImageSuperResolutionModel()
elif model_type == "esr":
    model = models.ExpantionSuperResolution()
elif model_type == "dsr":
    model = models.DenoisingAutoEncoderSR()
elif model_type == "ddsr":
    model = models.DeepDenoiseSR()
elif model_type == "rnsr":
    model = models.ResNetSR()

model.upscale(path, scale_factor=scale_factor, save_intermediate=save, evaluate=False, mode=mode,
              patch_size=patch_size, suffix=suffix)
コード例 #2
0
ファイル: main.py プロジェクト: ywangc/Image-Super-Resolution
assert model_type in ["sr", "esr", "dsr", "ddsr", "rnsr"], 'Model type must be either "sr", "esr", "dsr", ' \
                                                           '"ddsr" or "rnsr"'

mode = str(args.mode).lower()
assert mode in ['fast',
                'patch'], 'Mode of operation must be either "fast" or "patch"'

scale_factor = int(args.scale)
save = strToBool(args.save)

patch_size = int(args.patch_size)
assert patch_size > 0, "Patch size must be a positive integer"

if model_type == "sr":
    model = models.ImageSuperResolutionModel(scale_factor)
elif model_type == "esr":
    model = models.ExpantionSuperResolution(scale_factor)
elif model_type == "dsr":
    model = models.DenoisingAutoEncoderSR(scale_factor)
elif model_type == "ddsr":
    model = models.DeepDenoiseSR(scale_factor)
elif model_type == "rnsr":
    model = models.ResNetSR(scale_factor)
else:
    model = models.DeepDenoiseSR(scale_factor)

model.upscale(path,
              save_intermediate=save,
              mode=mode,
              patch_size=patch_size,
              suffix=suffix)
コード例 #3
0
    # esr = models.ExpantionSuperResolution(scale)
    # esr.create_model()
    # esr.fit(nb_epochs=250)
    """
    Train DenoisingAutoEncoderSR
    """

    # dsr = models.DenoisingAutoEncoderSR(scale)
    # dsr.create_model()
    # dsr.fit(nb_epochs=250)
    """
    Train Deep Denoise SR
    """

    ddsr = models.DeepDenoiseSR(scale)
    ddsr.create_model()
    ddsr.fit(nb_epochs=180)
    """
    Train Res Net SR
    """

    # rnsr = models.ResNetSR(scale)
    # rnsr.create_model(load_weights=True)
    # rnsr.fit(nb_epochs=50)
    """
    Train ESPCNN SR
    """

    # espcnn = models.EfficientSubPixelConvolutionalSR(scale)
    # espcnn.create_model()