コード例 #1
0
def build_model(args):
    """
    Build the model, optimizer, and loss according to experiment args

    Parameters
    ----------
    args : argparse.Namespace
        Experiment arguments

    Returns
    -------
    model : torch.nn.Module
        The model to be trained
    optimizer : torch.optim.Optimizer
        The optimizer
    loss : torch.nn.Module
        The loss function
    """
    # Build the model according to teh given arguments
    model = models.LogisticRegression(init_m=args.init_m, init_b=args.init_b)

    # Adam is a good default optimizer choice
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Your loss depends on the problem
    loss = nn.BCEWithLogitsLoss()

    if args.cuda:
        model = model.cuda()
        loss = loss.cuda()

    return model, optimizer, loss
コード例 #2
0
def main():
    args = get_args()
    check_args(args)

    if args.mode.lower() == "train":
        # Load the training data.
        X, y = load_data(args.data)

        # Create the model.
        # TODO: Add other algorithms as necessary.
        if args.algorithm.lower() == 'useless':
            model = models.Useless()
        elif args.algorithm.lower() == 'sumoffeatures':
            model = models.SumOfFeatures()
        elif args.algorithm.lower() == 'perceptron':
            model = models.Perceptron(args.online_learning_rate,
                                      args.online_training_iterations)
        elif args.algorithm.lower() == 'logisticregression':
            model = models.LogisticRegression(args.online_learning_rate,
                                              args.gd_iterations,
                                              args.num_features_to_select)
        else:
            raise Exception('The model given by --model is not yet supported.')

        # Train the model.
        model.fit(X, y)

        # Save the model.
        try:
            with open(args.model_file, 'wb') as f:
                pickle.dump(model, f)
        except IOError:
            raise Exception("Exception while writing to the model file.")
        except pickle.PickleError:
            raise Exception("Exception while dumping model pickle.")

    elif args.mode.lower() == "test":
        # Load the test data.
        X, y = load_data(args.data)

        # Load the model.
        try:
            with open(args.model_file, 'rb') as f:
                model = pickle.load(f)
        except IOError:
            raise Exception("Exception while reading the model file.")
        except pickle.PickleError:
            raise Exception("Exception while loading model pickle.")

        # Compute and save the predictions.
        y_hat = model.predict(X)
        invalid_label_mask = (y_hat != 0) & (y_hat != 1)
        if any(invalid_label_mask):
            raise Exception(
                'All predictions must be 0 or 1, but found other predictions.')
        np.savetxt(args.predictions_file, y_hat, fmt='%d')

    else:
        raise Exception("Mode given by --mode is unrecognized.")
コード例 #3
0
 async def get(self, filename):
     df = pd.read_csv(f'uploads/{filename}')
     col_predict = int(self.get_argument("col"))
     df, x, y = models.getSets(df, col_predict)
     dfHTML = df.to_html(max_rows=15, justify='center', col_space=50)
     reg = models.LogisticRegression()
     acc = await reg.trainAndPredict(x, y, 0.5)
     self.render("train.html", filename=filename, data=dfHTML, trained=True, acc=acc, col=col_predict)
コード例 #4
0
ファイル: train.py プロジェクト: neuralsyn/SelfGNN
    def evaluate(self):
        """
        Used for producing the results of Experiment 3 in the paper. 
        """
        print("Evaluating ...")
        emb_dim, num_class = self._embeddings.shape[1], self._labels.unique(
        ).shape[0]

        dev_accs, test_accs = [], []

        for i in range(50):
            classifier = models.LogisticRegression(emb_dim,
                                                   num_class).to(self._device)
            optimizer = torch.optim.Adam(classifier.parameters(),
                                         lr=0.01,
                                         weight_decay=0.0)

            for _ in range(100):
                classifier.train()
                logits, loss = classifier(self._embeddings[self._train_mask],
                                          self._labels[self._train_mask])
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

            dev_logits, _ = classifier(self._embeddings[self._dev_mask],
                                       self._labels[self._dev_mask])
            test_logits, _ = classifier(self._embeddings[self._test_mask],
                                        self._labels[self._test_mask])
            dev_preds = torch.argmax(dev_logits, dim=1)
            test_preds = torch.argmax(test_logits, dim=1)

            dev_acc = (
                torch.sum(dev_preds == self._labels[self._dev_mask]).float() /
                self._labels[self._dev_mask].shape[0]).detach().cpu().numpy()
            test_acc = (
                torch.sum(test_preds == self._labels[self._test_mask]).float()
                /
                self._labels[self._test_mask].shape[0]).detach().cpu().numpy()
            dev_accs.append(dev_acc * 100)
            test_accs.append(test_acc * 100)
            print(
                "Finished iteration {:02} of the logistic regression classifier. Validation accuracy {:.2f} test accuracy {:.2f}"
                .format(i + 1, dev_acc, test_acc))

        dev_accs = np.stack(dev_accs)
        test_accs = np.stack(test_accs)

        print('Average validation accuracy: {:.2f} with std: {}'.format(
            dev_accs.mean(), dev_accs.std()))
        print('Average test accuracy: {:.2f} with std: {:.2f}'.format(
            test_accs.mean(), test_accs.std()))
コード例 #5
0
def train(args):
    """ Fit a model's parameters given the parameters specified in args.
    """
    X, y = load_data(args.data)
    
    # build the appropriate model
    if args.algorithm == "perceptron":
        model = models.Perceptron(nfeatures=X.shape[1])
    elif args.algorithm == "logistic":
        model = models.LogisticRegression(nfeatures=X.shape[1])
    else:
        raise Exception("Algorithm argument not recognized")

    # Run the training loop
    for epoch in range(args.online_training_iterations):
        model.fit(X=X, y=y, lr=args.online_learning_rate)

    # Save the model
    pickle.dump(model, open(args.model_file, 'wb'))
コード例 #6
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-m', '--model', type=str, choices=models.available_models, dest='model_name')
    args = parser.parse_args()

    if args.model_name == "LinearRegression":
        model = models.LinearRegression(1, 1, learning_rate=0.005)
        x_train = np.array([[2.3], [4.4], [3.7], [6.1], [7.3], [2.1], [5.6], [7.7], [8.7], [4.1],
                            [6.7], [6.1], [7.5], [2.1], [7.2],
                            [5.6], [5.7], [7.7], [3.1]], dtype=np.float32)
        y_train = np.array([[3.7], [4.76], [4.], [7.1], [8.6], [3.5], [5.4], [7.6], [7.9], [5.3],
                            [7.3], [7.5], [8.5], [3.2], [8.7],
                            [6.4], [6.6], [7.9], [5.3]], dtype=np.float32)
        t_x = Tensor(x_train)
        t_y = Tensor(y_train)
        tensor_dataset = TensorDataset(t_x, t_y)
        data_loader = DataLoader(tensor_dataset, batch_size=32)
        model.run(data_loader, model)
    elif args.model_name == "LogisticRegression":
        X_train, y_train = load_iris(return_X_y=True)
        t_x, t_y = torch.tensor(X_train, dtype=torch.float), torch.tensor(y_train, dtype=torch.long)
        tensor_dataset = TensorDataset(t_x, t_y)

        num_classes = len(set(y_train))
        input_dim = X_train.shape[1]

        data_loader = DataLoader(tensor_dataset, batch_size=32, shuffle=True)
        model = models.LogisticRegression(input_dim, num_classes, learning_rate=0.01, epoch=1000)
        model.run(data_loader, model)
    elif args.model_name == "Convolution2D":
        n_epoch = 5
        tr_batch_size, ts_batch_size = 32, 1024
        data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))])
        tr_mnist = MNIST(root=os.path.realpath('../../dataset/mnist'), train=True,
                         transform=data_transform, download=False)
        ts_mnist = MNIST(root=os.path.realpath('../../dataset/mnist'), train=False,
                         transform=data_transform, download=False)

        train_loader = DataLoader(tr_mnist, batch_size=tr_batch_size, shuffle=True)
        test_loader = DataLoader(ts_mnist, batch_size=ts_batch_size, shuffle=True)

        conv_net = models.Convolution2D(n_epoch=n_epoch, log_per_batch=1000, train_batch_size=tr_batch_size)
        conv_net.run(train_loader, test_loader)
コード例 #7
0
ファイル: main.py プロジェクト: siddheswarc/Machine-Learning
def main():
    data = Data()
    logistic_regression = models.LogisticRegression()
    neural_network = models.NeuralNet()
    svm = models.SupportVectorMachine(C=1.0, kernel='rbf', gamma='scale')
    random_forest = models.RandomForest(n_estimators=100,
                                        max_depth=None,
                                        random_state=None)

    # Process dataset
    training_data_features, training_data_labels, mnist_test_data_features, mnist_test_data_labels, \
    usps_test_data_features, usps_test_data_labels, combined_test_data_features, combined_test_data_labels = \
        data.pre_process()

    # Logistic Regression
    logistic_regression.fit(training_data_features,
                            training_data_labels,
                            learning_rate=0.01,
                            epochs=500)
    accuracy_mnist, confusion_mnist = logistic_regression.predict(
        mnist_test_data_features, mnist_test_data_labels)
    accuracy_usps, confusion_usps = logistic_regression.predict(
        usps_test_data_features, usps_test_data_labels)
    accuracy_combined, confusion_combined = logistic_regression.predict(
        combined_test_data_features, combined_test_data_labels)
    print_and_plot('Logistic Regression', accuracy_mnist, accuracy_usps,
                   accuracy_combined, confusion_mnist, confusion_usps,
                   confusion_combined)

    # Neural Network
    neural_network.fit(training_data_features, training_data_labels, epochs=10)
    accuracy_mnist, confusion_mnist = neural_network.predict(
        mnist_test_data_features, mnist_test_data_labels)
    accuracy_usps, confusion_usps = neural_network.predict(
        usps_test_data_features, usps_test_data_labels)
    accuracy_combined, confusion_combined = neural_network.predict(
        combined_test_data_features, combined_test_data_labels)
    print_and_plot('Neural Network', accuracy_mnist, accuracy_usps,
                   accuracy_combined, confusion_mnist, confusion_usps,
                   confusion_combined)

    # Support Vector Machine
    svm.fit(training_data_features, training_data_labels)
    accuracy_mnist, confusion_mnist = svm.predict(mnist_test_data_features,
                                                  mnist_test_data_labels)
    accuracy_usps, confusion_usps = svm.predict(usps_test_data_features,
                                                usps_test_data_labels)
    accuracy_combined, confusion_combined = svm.predict(
        combined_test_data_features, combined_test_data_labels)
    print_and_plot('SVM', accuracy_mnist, accuracy_usps, accuracy_combined,
                   confusion_mnist, confusion_usps, confusion_combined)

    # Random Forest
    random_forest.fit(training_data_features, training_data_labels)
    accuracy_mnist, confusion_mnist = random_forest.predict(
        mnist_test_data_features, mnist_test_data_labels)
    accuracy_usps, confusion_usps = random_forest.predict(
        usps_test_data_features, usps_test_data_labels)
    accuracy_combined, confusion_combined = random_forest.predict(
        combined_test_data_features, combined_test_data_labels)
    print_and_plot('Random Forest', accuracy_mnist, accuracy_usps,
                   accuracy_combined, confusion_mnist, confusion_usps,
                   confusion_combined)
コード例 #8
0
                                            train=True,
                                            download=True,
                                            transform=transform_train,
                                            target_transform=target_transform)
    trainset_wo_aug = torchvision.datasets.CIFAR10(
        root='./data',
        train=True,
        download=False,
        transform=transform_test,
        target_transform=target_transform)

    bc = bilevel_coreset.BilevelCoreset(loss_fn,
                                        loss_fn,
                                        max_inner_it=7500,
                                        max_conj_grad_it=100)
    model = models.LogisticRegression(nystrom_features_dim, num_classes)

    # choose base inds
    based_inds = np.random.choice(len(trainset.targets),
                                  base_inds_size,
                                  replace=False)

    inds = bc.build_with_nystrom_proxy(
        trainset,
        trainset_wo_aug,
        based_inds,
        coreset_size,
        kernel_fn_ntk,
        loader_creator_fn,
        model,
        nystrom_features_dim=nystrom_features_dim,
コード例 #9
0
    for train_index, test_index in group_kfold.split(Xdata, Ydata, groups):
        model.train(Xdata[train_index], Ydata[train_index])
        Ypred = model.test(Xdata[test_index])
        confusion = sklearn.metrics.confusion_matrix(Ydata[test_index], Ypred,
                labels=features.labels)
        if sum_confusion is None:
            sum_confusion = np.zeros(confusion.shape)
        sum_confusion += confusion
    return sum_confusion / k

def select_best_model(Xdata, Ydata, models):
    avg_accuracies = [(i, k_fold_cross_validate(Xdata, Ydata, 4, model)) for
            i, model in enumerate(models)]
    print(avg_accuracies)
    return max(avg_accuracies, key=operator.itemgetter(1))


allfeatures = features.compute_or_read_features()
Xdata, Ydata = to_numpy_arrays(allfeatures)

models = [models.RandomForest(200, 'gini'), models.LogisticRegression(),
        models.SVMNonLinear('rbf'), models.SVMNonLinear('sigmoid'),
        models.NeuralNet(), models.KNN()]
#best = select_best_model(Xdata, Ydata, models)
#print(best)

for model in models:
    cm = k_fold_confusion_matrix(Xdata, Ydata, 4, model)
    save_confusion_matrix(cm, model._name)
    print(f"Confusion matrix for {model._name} saved")
コード例 #10
0
ファイル: train.py プロジェクト: zekarias-tilahun/SelfGNN
    def evaluate(self):
        """
        Evaluates SelfGNN on the train, validation, and test splits in a semi-supervised fashion.
        
        Note: Used for producing the results of Experiment 1, 3 in the paper. 
        """
        print("Evaluating ...")
        emb_dim, num_class = self._embeddings.shape[1], self._labels.unique(
        ).shape[0]

        dev_accs, test_accs = [], []
        args = self._args
        iters = 20 if len(
            self._train_mask.shape) == 1 else self._train_mask.shape[1]
        for i in range(iters):
            classifier = models.LogisticRegression(emb_dim,
                                                   num_class).to(self._device)
            optimizer = torch.optim.Adam(classifier.parameters(),
                                         lr=0.01,
                                         weight_decay=0.0)
            mask_index = None if len(self._train_mask.shape) == 1 else i
            train_mask, dev_mask, test_mask = index_mask(self._train_mask,
                                                         self._dev_mask,
                                                         self._test_mask,
                                                         index=i)
            for _ in range(100):
                classifier.train()
                logits, loss = classifier(self._embeddings[train_mask],
                                          self._labels[train_mask])
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

            dev_logits, _ = classifier(self._embeddings[dev_mask],
                                       self._labels[dev_mask])
            test_logits, _ = classifier(self._embeddings[test_mask],
                                        self._labels[test_mask])
            dev_preds = torch.argmax(dev_logits, dim=1)
            test_preds = torch.argmax(test_logits, dim=1)

            dev_acc = (torch.sum(dev_preds == self._labels[dev_mask]).float() /
                       self._labels[dev_mask].shape[0]).detach().cpu().numpy()
            test_acc = (
                torch.sum(test_preds == self._labels[test_mask]).float() /
                self._labels[test_mask].shape[0]).detach().cpu().numpy()
            dev_accs.append(dev_acc * 100)
            test_accs.append(test_acc * 100)
            print(
                "Finished iteration {:02} of the logistic regression classifier. Validation accuracy {:.2f} test accuracy {:.2f}"
                .format(i + 1, dev_acc, test_acc))

        dev_accs = np.stack(dev_accs)
        test_accs = np.stack(test_accs)

        dev_acc, dev_std = dev_accs.mean(), dev_accs.std()
        test_acc, test_std = test_accs.mean(), test_accs.std()
        nc = self._norm_config
        path = osp.join(
            self._dataset.result_dir,
            f"results-norm.encoder.{nc['encoder_norm']}.projection.{nc['prj_head_norm']}.prediction.{nc['prd_head_norm']}.txt"
        )
        with open(path, 'w') as f:
            f.write(
                f"{args.name},{args.model},{dev_acc:.4f},{dev_std:.2f},{test_acc:.4f},{test_std:.2f}"
            )
        print('Average validation accuracy: {:.2f} with std: {}'.format(
            dev_acc, dev_std))
        print('Average test accuracy: {:.2f} with std: {:.2f}'.format(
            test_acc, test_std))
        return dev_acc, dev_std, test_acc, test_std
コード例 #11
0
def main():
    data = Data()
    logistic_regression = models.LogisticRegression()
    neural_network = models.NeuralNet()
    svm = models.SupportVectorMachine(C=1.0, kernel='rbf', gamma='scale')
    random_forest = models.RandomForest(n_estimators=100,
                                        max_depth=None,
                                        random_state=None)
    discriminant_analysis = DiscriminantAnalysis()
    vaecnn = deep_learning_models.VAEConvolutionNeuralNet(
        input_data.read_data_sets("data", one_hot=True), (28, 28), (28, 28))

    # Process dataset
    training_data_features, training_data_labels, mnist_test_data_features, mnist_test_data_labels, \
    usps_test_data_features, usps_test_data_labels, combined_test_data_features, combined_test_data_labels = \
        data.pre_process()

    # Discriminant Analysis
    IMAGE_SIZE = int(training_data_features.shape[-1]**0.5)
    discriminant_analysis.fit(
        training_data_features.reshape((-1, IMAGE_SIZE, IMAGE_SIZE)),
        training_data_labels)
    accuracy_mnist, confusion_mnist = discriminant_analysis.predict(
        'MNIST dataset',
        mnist_test_data_features.reshape((-1, IMAGE_SIZE, IMAGE_SIZE)),
        mnist_test_data_labels)
    accuracy_usps, confusion_usps = discriminant_analysis.predict(
        'USPS dataset',
        usps_test_data_features.reshape((-1, IMAGE_SIZE, IMAGE_SIZE)),
        usps_test_data_labels)
    accuracy_combined, confusion_combined = discriminant_analysis.predict(
        'Combined dataset',
        combined_test_data_features.reshape((-1, IMAGE_SIZE, IMAGE_SIZE)),
        combined_test_data_labels)
    print_and_plot('Bayesian Discriminant Analysis', accuracy_mnist,
                   accuracy_usps, accuracy_combined, confusion_mnist,
                   confusion_usps, confusion_combined)

    # Logistic Regression
    logistic_regression.fit(training_data_features,
                            training_data_labels,
                            learning_rate=0.01,
                            epochs=500)
    accuracy_mnist, confusion_mnist = logistic_regression.predict(
        mnist_test_data_features, mnist_test_data_labels)
    accuracy_usps, confusion_usps = logistic_regression.predict(
        usps_test_data_features, usps_test_data_labels)
    accuracy_combined, confusion_combined = logistic_regression.predict(
        combined_test_data_features, combined_test_data_labels)
    print_and_plot('Logistic Regression', accuracy_mnist, accuracy_usps,
                   accuracy_combined, confusion_mnist, confusion_usps,
                   confusion_combined)

    # Neural Network
    neural_network.fit(training_data_features, training_data_labels, epochs=10)
    accuracy_mnist, confusion_mnist = neural_network.predict(
        mnist_test_data_features, mnist_test_data_labels)
    accuracy_usps, confusion_usps = neural_network.predict(
        usps_test_data_features, usps_test_data_labels)
    accuracy_combined, confusion_combined = neural_network.predict(
        combined_test_data_features, combined_test_data_labels)
    print_and_plot('Neural Network', accuracy_mnist, accuracy_usps,
                   accuracy_combined, confusion_mnist, confusion_usps,
                   confusion_combined)

    # Support Vector Machine
    svm.fit(training_data_features, training_data_labels)
    accuracy_mnist, confusion_mnist = svm.predict(mnist_test_data_features,
                                                  mnist_test_data_labels)
    accuracy_usps, confusion_usps = svm.predict(usps_test_data_features,
                                                usps_test_data_labels)
    accuracy_combined, confusion_combined = svm.predict(
        combined_test_data_features, combined_test_data_labels)
    print_and_plot('SVM', accuracy_mnist, accuracy_usps, accuracy_combined,
                   confusion_mnist, confusion_usps, confusion_combined)

    # Random Forest
    random_forest.fit(training_data_features, training_data_labels)
    accuracy_mnist, confusion_mnist = random_forest.predict(
        mnist_test_data_features, mnist_test_data_labels)
    accuracy_usps, confusion_usps = random_forest.predict(
        usps_test_data_features, usps_test_data_labels)
    accuracy_combined, confusion_combined = random_forest.predict(
        combined_test_data_features, combined_test_data_labels)
    print_and_plot('Random Forest', accuracy_mnist, accuracy_usps,
                   accuracy_combined, confusion_mnist, confusion_usps,
                   confusion_combined)

    # Restricted Boltzmann Machine
    num_hidden_nodes_list = [20, 100, 500]
    for num_hidden_nodes in num_hidden_nodes_list:
        rbm = deep_learning_models.RBM(images=input_data.read_data_sets(
            "data", one_hot=True),
                                       n_components=num_hidden_nodes,
                                       learning_rate=0.02,
                                       batch_size=100,
                                       n_iter=1000,
                                       random_state=0)
        rbm.fit()
        rbm.gibbs_sampling(1000)
        rbm.generate_images(num_hidden_nodes)

    # Variational Auto Encoders
    code_unit_list = [2, 8, 16]
    for code_unit in code_unit_list:
        vae = deep_learning_models.VAE(
            input_data.read_data_sets("data", one_hot=True), code_unit)
        vae.generate_images(epochs=20)

    # Variational Auto Encoders with Convolutional Neural Networks
    vaecnn.encode()
    vaecnn.decode()
    vaecnn.compile_()
    vaecnn.train(epochs=10, batch_size=100)
コード例 #12
0
ファイル: main.py プロジェクト: charliezon/MNIST-USPS
def main():
    data = Data()
    logistic_regression = models.LogisticRegression()
    neural_network = models.NeuralNet()
    svm = models.SupportVectorMachine(C=1.0, kernel='rbf', gamma='scale')
    random_forest = models.RandomForest(n_estimators=100,
                                        max_depth=None,
                                        random_state=None)
    discriminant_analysis = DiscriminantAnalysis()

    # Process dataset
    training_data_features, training_data_labels, mnist_test_data_features, mnist_test_data_labels, \
    usps_test_data_features, usps_test_data_labels, combined_test_data_features, combined_test_data_labels = \
        data.pre_process()

    # Discriminant Analysis
    IMAGE_SIZE = int(training_data_features.shape[-1]**0.5)
    discriminant_analysis.fit(
        training_data_features.reshape((-1, IMAGE_SIZE, IMAGE_SIZE)),
        training_data_labels)
    accuracy_mnist, confusion_mnist = discriminant_analysis.predict(
        'MNIST dataset',
        mnist_test_data_features.reshape((-1, IMAGE_SIZE, IMAGE_SIZE)),
        mnist_test_data_labels)
    accuracy_usps, confusion_usps = discriminant_analysis.predict(
        'USPS dataset',
        usps_test_data_features.reshape((-1, IMAGE_SIZE, IMAGE_SIZE)),
        usps_test_data_labels)
    accuracy_combined, confusion_combined = discriminant_analysis.predict(
        'Combined dataset',
        combined_test_data_features.reshape((-1, IMAGE_SIZE, IMAGE_SIZE)),
        combined_test_data_labels)
    print_and_plot('Bayesian Discriminant Analysis', accuracy_mnist,
                   accuracy_usps, accuracy_combined, confusion_mnist,
                   confusion_usps, confusion_combined)

    # Logistic Regression
    logistic_regression.fit(training_data_features,
                            training_data_labels,
                            learning_rate=0.01,
                            epochs=500)
    accuracy_mnist, confusion_mnist = logistic_regression.predict(
        mnist_test_data_features, mnist_test_data_labels)
    accuracy_usps, confusion_usps = logistic_regression.predict(
        usps_test_data_features, usps_test_data_labels)
    accuracy_combined, confusion_combined = logistic_regression.predict(
        combined_test_data_features, combined_test_data_labels)
    print_and_plot('Logistic Regression', accuracy_mnist, accuracy_usps,
                   accuracy_combined, confusion_mnist, confusion_usps,
                   confusion_combined)

    # Neural Network
    neural_network.fit(training_data_features, training_data_labels, epochs=10)
    accuracy_mnist, confusion_mnist = neural_network.predict(
        mnist_test_data_features, mnist_test_data_labels)
    accuracy_usps, confusion_usps = neural_network.predict(
        usps_test_data_features, usps_test_data_labels)
    accuracy_combined, confusion_combined = neural_network.predict(
        combined_test_data_features, combined_test_data_labels)
    print_and_plot('Neural Network', accuracy_mnist, accuracy_usps,
                   accuracy_combined, confusion_mnist, confusion_usps,
                   confusion_combined)

    # Support Vector Machine
    svm.fit(training_data_features, training_data_labels)
    accuracy_mnist, confusion_mnist = svm.predict(mnist_test_data_features,
                                                  mnist_test_data_labels)
    accuracy_usps, confusion_usps = svm.predict(usps_test_data_features,
                                                usps_test_data_labels)
    accuracy_combined, confusion_combined = svm.predict(
        combined_test_data_features, combined_test_data_labels)
    print_and_plot('SVM', accuracy_mnist, accuracy_usps, accuracy_combined,
                   confusion_mnist, confusion_usps, confusion_combined)

    # Random Forest
    random_forest.fit(training_data_features, training_data_labels)
    accuracy_mnist, confusion_mnist = random_forest.predict(
        mnist_test_data_features, mnist_test_data_labels)
    accuracy_usps, confusion_usps = random_forest.predict(
        usps_test_data_features, usps_test_data_labels)
    accuracy_combined, confusion_combined = random_forest.predict(
        combined_test_data_features, combined_test_data_labels)
    print_and_plot('Random Forest', accuracy_mnist, accuracy_usps,
                   accuracy_combined, confusion_mnist, confusion_usps,
                   confusion_combined)