コード例 #1
0
def main(mode, conv_until=None):
    # setup stuff to build model

    # This is it. use melgram, up to 6000 (SR is assumed to be 12000, see model.py),
    # do decibel scaling
    assert mode in ('feature', 'tagger')
    if mode == 'feature':
        last_layer = False
    else:
        last_layer = True

    if conv_until is None:
        conv_until = 4

    K.set_image_dim_ordering('th')

    assert K.image_dim_ordering() == 'th', ('image_dim_ordering should be "th". ' +
                                            'open ~/.keras/keras.json to change it.')

    args = Namespace(tf_type='melgram',  # which time-frequency to use
                     normalize='no', decibel=True, fmin=0.0, fmax=6000,  # mel-spectrogram params
                     n_mels=96, trainable_fb=False, trainable_kernel=False,  # mel-spectrogram params
                     conv_until=conv_until)  # how many conv layer to use? set it 4 if tagging.
    # set in [0, 1, 2, 3, 4] if feature extracting.

    model = my_models.build_convnet_model(args=args, last_layer=last_layer)
    model.load_weights('weights_layer{}_{}.hdf5'.format(conv_until, K._backend),
                       by_name=True)
    model.layers[1].summary()
    model.summary()
    # and use it!
    return model
コード例 #2
0
def main(mode):
    # setup stuff to build model

    # This is it. use melgram, up to 6000 (SR is assumed to be 12000, see model.py),
    # do decibel scaling
    assert mode in ('feature', 'tagger')
    if mode == 'feature':
        last_layer = False
    else:
        last_layer = True

    args = Namespace(test=False,
                     data_percent=100,
                     model_name='',
                     tf_type='melgram',
                     normalize='no',
                     decibel=True,
                     fmin=0.0,
                     fmax=6000,
                     n_mels=96,
                     trainable_fb=False,
                     trainable_kernel=False)

    model = models.build_convnet_model(args=args, last_layer=last_layer)
    model.load_weights('weights_{}.hdf5'.format(K._backend), by_name=True)
    model.layers[1].summary()
    model.summary()