コード例 #1
0
def compile_model(model, loss="ce"):
    if loss is not None:
        loss = models.get_loss(loss, model.output_shape[1])
        model.compile(optimizer="adam",
                      loss=[loss],
                      metrics=[metrics.sparse_categorical_accuracy])
    else:
        model.compile(optimizer="adam")
コード例 #2
0
def main(config):
    train_loader = get_dataloader(config['data_loader']['type'], config['data_loader']['args'])

    criterion = get_loss(config).cuda()

    model = get_model(config)

    trainer = Trainer(config=config,
                      model=model,
                      criterion=criterion,
                      train_loader=train_loader)
    trainer.train()
コード例 #3
0
ファイル: reptile.py プロジェクト: BMDroid/Reptile-Pytorch
 def evaluate(self, dataset, num_classes, num_shots, inner_batch_size,
              inner_iters, transductive):
     """
     Run a single evaluation of the model.
 
     Samples a few-shot learning task and measures
     performance.
 
     Args:
       dataset: a sequence of data classes, where each data
         class has a sample(n) method.
       input_ph: placeholder for a batch of samples.
       label_ph: placeholder for a batch of labels.
       minimize_op: TensorFlow Op to minimize a loss on the
         batch specified by input_ph and label_ph.
       predictions: a Tensor of integer label predictions.
       num_classes: number of data classes to sample.
       num_shots: number of examples per data class.
       inner_batch_size: batch size for every inner-loop
         training iteration.
       inner_iters: number of inner-loop iterations.
 
     Returns:
       The number of correctly predicted samples.
         This always ranges from 0 to num_classes.
     """
     model_clone = clone_model(num_classes, self.model_state)
     optimizer_clone = get_optimizer(model_clone, self.op_state)
     model_clone.train()
     train, test = dataset.get_random_task_split(num_classes,
                                                 train_shots=num_shots,
                                                 test_shots=1)
     """
     Sampling with replacement
     """
     sampler = RandomSampler(train,
                             replacement=True,
                             num_samples=inner_batch_size * inner_iters)
     train_loader = DataLoader(train,
                               batch_size=inner_batch_size,
                               sampler=sampler,
                               pin_memory=self.pin_memory)
     for _, (inputs, labels) in enumerate(train_loader):
         inputs, labels = Variable_(inputs, labels, self.cuda)
         prediction = model_clone(inputs)
         loss = get_loss(prediction, labels)
         optimizer_clone.zero_grad()
         loss.backward()
         optimizer_clone.step()
     return self._test_predictions(model_clone, train, test, transductive,
                                   self.cuda)
コード例 #4
0
ファイル: reptile.py プロジェクト: BMDroid/Reptile-Pytorch
    def train_step(self, dataset, num_classes, num_shots, inner_batch_size,
                   inner_iters, meta_step_size, meta_batch_size):
        """
        Perform a Reptile training step.
    
        Args:
          dataset: object contains images to be trained.
          num_classes: number of data classes to sample.
          num_shots: number of examples per data class.
          inner_batch_size: batch size for every inner-loop
            training iteration.
          inner_iters: number of inner-loop iterations.
          meta_step_size: interpolation coefficient.
          meta_batch_size: how many inner-loops to run.
        """

        updates = []
        for _ in range(meta_batch_size):
            model = clone_model(num_classes, self.model_state)
            optimizer = get_optimizer(model, self.op_state)
            model.train()
            mini_train, _ = dataset.get_random_task_split(
                num_classes, train_shots=num_shots, test_shots=0)
            """
            Sampling without replacement
            """
            train_loader = DataLoader(mini_train,
                                      batch_size=inner_batch_size,
                                      drop_last=True,
                                      shuffle=True,
                                      pin_memory=self.pin_memory)
            for _, (inputs, labels) in enumerate(train_loader):
                inputs, labels = Variable_(inputs, labels, self.cuda)
                last_backup = model.state_dict()
                prediction = model(inputs)
                loss = get_loss(prediction, labels)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
            updates.append(subtract_vars(model.state_dict(), last_backup))
            self.op_state = optimizer.state_dict()
        update = average_vars(updates)
        self.model_state = add_vars(self.model_state,
                                    scale_vars(update, meta_step_size))
        self.op_state = optimizer.state_dict()
コード例 #5
0
def main(config):
    import torch
    from models import get_model, get_loss
    from data_loader import get_dataloader
    from trainer import Trainer
    from post_processing import get_post_processing
    from utils import get_metric
    if torch.cuda.device_count() > 1:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(
            backend="nccl",
            init_method="env://",
            world_size=torch.cuda.device_count(),
            rank=args.local_rank)
        config['distributed'] = True
    else:
        config['distributed'] = False
    config['local_rank'] = args.local_rank

    train_loader = get_dataloader(config['dataset']['train'],
                                  config['distributed'])
    assert train_loader is not None
    if 'validate' in config['dataset']:
        validate_loader = get_dataloader(config['dataset']['validate'], False)
    else:
        validate_loader = None

    criterion = get_loss(config['loss']).cuda()

    model = get_model(config['arch'])

    post_p = get_post_processing(config['post_processing'])
    metric = get_metric(config['metric'])

    trainer = Trainer(config=config,
                      model=model,
                      criterion=criterion,
                      train_loader=train_loader,
                      post_process=post_p,
                      metric_cls=metric,
                      validate_loader=validate_loader)
    trainer.train()
コード例 #6
0
def compile_model(model, loss='ce'):
    loss = models.get_loss(loss, model.output_shape[1])
    model.compile(optimizer='adam',
                  loss=[loss],
                  metrics=[metrics.sparse_categorical_accuracy])
コード例 #7
0
def main(config):
    train_loader = get_dataloader(config['data_loader']['type'],
                                  config['data_loader']['args'])
    print(train_loader)
    criterion = get_loss(config).cuda()
コード例 #8
0
def compile_model(model, loss='ce'):
    loss = models.get_loss(loss, model.output_shape[1])
    model.compile(optimizer='adam', loss=[loss], metrics=['accuracy'])