def main(config): setup_logging(os.getcwd()) logger = logging.getLogger('test') use_gpu = config['n_gpu'] > 0 and torch.cuda.is_available() device = torch.device('cuda:0' if use_gpu else 'cpu') datamanager = DataManger(config['data'], phase='test') model = Baseline(num_classes=datamanager.datasource.get_num_classes( 'train'), is_training=False) model = model.eval() logger.info('Loading checkpoint: {} ...'.format(config['resume'])) checkpoint = torch.load(config['resume'], map_location='cpu') model.load_state_dict(checkpoint['state_dict']) if config['extract']: logger.info('Extract feature from query set...') query_feature, query_label = feature_extractor( model, datamanager.get_dataloader('query'), device) logger.info('Extract feature from gallery set...') gallery_feature, gallery_label = feature_extractor( model, datamanager.get_dataloader('gallery'), device) gallery_embeddings = (gallery_feature, gallery_label) query_embeddings = (query_feature, query_label) os.makedirs(config['testing']['ouput_dir'], exist_ok=True) with open(os.path.join(config['testing']['ouput_dir'], 'gallery_embeddings.pt'), 'wb') as f: torch.save(gallery_embeddings, f) with open(os.path.join(config['testing']['ouput_dir'], 'query_embeddings.pt'), 'wb') as f: torch.save(query_embeddings, f) gallery_feature, gallery_label = torch.load(os.path.join( config['testing']['ouput_dir'], 'gallery_embeddings.pt'), map_location='cpu') query_feature, query_label = torch.load(os.path.join( config['testing']['ouput_dir'], 'query_embeddings.pt'), map_location='cpu') distance = compute_distance_matrix(query_feature, gallery_feature) top1 = top_k(distance, output=gallery_label, target=query_label, k=1) top5 = top_k(distance, output=gallery_label, target=query_label, k=5) top10 = top_k(distance, output=gallery_label, target=query_label, k=10) m_ap = mAP(distance, output=gallery_label, target=query_label, k='all') logger.info('Datasets: {}, without spatial-temporal: top1: {}, top5: {}, top10: {}, mAP: {}'.format( datamanager.datasource.get_name_dataset(), top1, top5, top10, m_ap))
def main(): saver = utils.Saver(opt) # randomize seed opt.manualSeed = random.randint(1, 10000) # fix seed random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) torch.cuda.manual_seed_all(opt.manualSeed) # load data root = "data/modelnet40_ply_hdf5_2048/" #"data/modelnet40_normal_resampled"# use_cuda = torch.cuda.is_available() transforms_list = [] random_permute = utils.Random_permute(opt.num_points, delta=opt.distance) # load transformations if opt.random_input: print("random_input") transforms_list.append(random_permute) # Load dataset / data loader train_dataset = data.ModelNetDataset( root, train=True, sort=opt.sort, transform=transforms.Compose(transforms_list), distance=opt.distance, normal=opt.normal) train_loader = DataLoader(train_dataset, batch_size=opt.batchSize, shuffle=True, num_workers=opt.workers) test_dataset = data.ModelNetDataset(root, train=False, sort=opt.sort, distance=opt.distance, normal=opt.normal) test_loader = DataLoader(test_dataset, batch_size=opt.batchSize, shuffle=False, num_workers=opt.workers) # define model ndim = 6 if opt.distance or opt.normal else 3 if opt.model == 'lstm': model = Baseline(input_dim=ndim, maxout=opt.elem_max) elif opt.model == 'lstm_mlp': model = LSTM_mlp(input_dim=ndim, maxout=opt.elem_max, mlp=[64, 128, 256, 512], fc=[512, 256, 40]) elif opt.model == 'test': model = Test(input_dim=ndim, maxout=opt.elem_max) # load speicified pre-trained model if opt.path != '': model.load_state_dict(torch.load(opt.path)) # define optimizer and loss function optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate, weight_decay=1e-5) criterion = nn.CrossEntropyLoss() # transfer model and criterion to cuda if exist if use_cuda: model = model.cuda( ) #nn.DataParallel(model).cuda()#model.cuda() #nn.DataParallel(model).cuda() criterion = criterion.cuda() best_model_wts = model.state_dict() early_stopping = utils.Early_stopping(opt.early_stopping, patience=15) saver.log_parameters(model.parameters()) for epoch in range(opt.nepoch): adjust_learning_rate(optimizer, epoch, saver) train(model, optimizer, criterion, saver, train_loader, epoch) test_loss = test(model, criterion, saver, test_loader, epoch) early_stopping.update(test_loss) if early_stopping.stop(): break saver.save_result()
class Session: def __init__(self): self.log_dir = settings.log_dir self.model_dir = settings.model_dir ensure_dir(settings.log_dir) ensure_dir(settings.model_dir) logger.info('set log dir as %s' % settings.log_dir) logger.info('set model dir as %s' % settings.model_dir) ##################################### Import models ########################### self.feature_generator = Baseline( last_stride=1, model_path=settings.pretrained_model_path) self.feature_embedder_rgb = FeatureEmbedder(2048) self.feature_embedder_ir = FeatureEmbedder(2048) self.id_classifier = IdClassifier() if torch.cuda.is_available(): self.feature_generator.cuda() self.feature_embedder_rgb.cuda() self.feature_embedder_ir.cuda() self.id_classifier.cuda() self.feature_generator = nn.DataParallel(self.feature_generator, device_ids=range( settings.num_gpu)) self.feature_embedder_rgb = nn.DataParallel(self.feature_embedder_rgb, device_ids=range( settings.num_gpu)) self.feature_embedder_ir = nn.DataParallel(self.feature_embedder_ir, device_ids=range( settings.num_gpu)) self.id_classifier = nn.DataParallel(self.id_classifier, device_ids=range( settings.num_gpu)) ############################# Get Losses & Optimizers ######################### self.criterion_at = expATLoss() self.criterion_identity = CrossEntropyLabelSmoothLoss( settings.num_classes, epsilon=0.1) #torch.nn.CrossEntropyLoss() opt_models = [ self.feature_generator, self.feature_embedder_rgb, self.feature_embedder_ir, self.id_classifier ] def make_optimizer(opt_models): train_params = [] for opt_model in opt_models: for key, value in opt_model.named_parameters(): if not value.requires_grad: continue lr = settings.BASE_LR weight_decay = settings.WEIGHT_DECAY if "bias" in key: lr = settings.BASE_LR * settings.BIAS_LR_FACTOR weight_decay = settings.WEIGHT_DECAY_BIAS train_params += [{ "params": [value], "lr": lr, "weight_decay": weight_decay }] optimizer = torch.optim.Adam(train_params) return optimizer self.optimizer_G = make_optimizer(opt_models) self.epoch_count = 0 self.step = 0 self.save_steps = settings.save_steps self.num_workers = settings.num_workers self.writers = {} self.dataloaders = {} self.sche_G = solver.WarmupMultiStepLR(self.optimizer_G, milestones=settings.iter_sche, gamma=0.1) # default setting def tensorboard(self, name): self.writers[name] = SummaryWriter( os.path.join(self.log_dir, name + '.events')) return self.writers[name] def write(self, name, out): for k, v in out.items(): self.writers[name].add_scalar(name + '/' + k, v, self.step) out['G_lr'] = self.optimizer_G.param_groups[0]['lr'] out['step'] = self.step out['eooch_count'] = self.epoch_count outputs = ["{}:{:.4g}".format(k, v) for k, v in out.items()] logger.info(name + '--' + ' '.join(outputs)) def save_checkpoints(self, name): ckp_path = os.path.join(self.model_dir, name) obj = { 'feature_generator': self.feature_generator.state_dict(), 'feature_embedder_rgb': self.feature_embedder_rgb.state_dict(), 'feature_embedder_ir': self.feature_embedder_ir.state_dict(), 'id_classifier': self.id_classifier.state_dict(), 'clock': self.step, 'epoch_count': self.epoch_count, 'opt_G': self.optimizer_G.state_dict(), } torch.save(obj, ckp_path) def load_checkpoints(self, name): ckp_path = os.path.join(self.model_dir, name) try: obj = torch.load(ckp_path) print('load checkpoint: %s' % ckp_path) except FileNotFoundError: return self.feature_generator.load_state_dict(obj['feature_generator']) self.feature_embedder_rgb.load_state_dict(obj['feature_embedder_rgb']) self.feature_embedder_ir.load_state_dict(obj['feature_embedder_ir']) self.id_classifier.load_state_dict(obj['id_classifier']) self.optimizer_G.load_state_dict(obj['opt_G']) self.step = obj['clock'] self.epoch_count = obj['epoch_count'] self.sche_G.last_epoch = self.step def load_checkpoints_delf_init(self, name): ckp_path = os.path.join(self.model_dir, name) obj = torch.load(ckp_path) self.backbone.load_state_dict(obj['backbone']) def cal_fea(self, x, domain_mode): feat = self.feature_generator(x) if domain_mode == 'rgb': return self.feature_embedder_rgb(feat) elif domain_mode == 'ir': return self.feature_embedder_ir(feat) def inf_batch(self, batch): alpha = settings.alpha beta = settings.beta anchor_rgb, positive_rgb, negative_rgb, anchor_ir, positive_ir, \ negative_ir, anchor_label, modality_rgb, modality_ir = batch if torch.cuda.is_available(): anchor_rgb = anchor_rgb.cuda() positive_rgb = positive_rgb.cuda() negative_rgb = negative_rgb.cuda() anchor_ir = anchor_ir.cuda() positive_ir = positive_ir.cuda() negative_ir = negative_ir.cuda() anchor_label = anchor_label.cuda() anchor_rgb_features = self.cal_fea(anchor_rgb, 'rgb') positive_rgb_features = self.cal_fea(positive_rgb, 'rgb') negative_rgb_features = self.cal_fea(negative_rgb, 'rgb') anchor_ir_features = self.cal_fea(anchor_ir, 'ir') positive_ir_features = self.cal_fea(positive_ir, 'ir') negative_ir_features = self.cal_fea(negative_ir, 'ir') at_loss_rgb = self.criterion_at.forward(anchor_rgb_features, positive_ir_features, negative_ir_features) at_loss_ir = self.criterion_at.forward(anchor_ir_features, positive_rgb_features, negative_rgb_features) at_loss = at_loss_rgb + at_loss_ir predicted_id_rgb = self.id_classifier(anchor_rgb_features) predicted_id_ir = self.id_classifier(anchor_ir_features) identity_loss = self.criterion_identity(predicted_id_rgb, anchor_label) + \ self.criterion_identity(predicted_id_ir, anchor_label) loss_G = alpha * at_loss + beta * identity_loss self.optimizer_G.zero_grad() loss_G.backward() self.optimizer_G.step() self.write('train_stats', { 'loss_G': loss_G, 'at_loss': at_loss, 'identity_loss': identity_loss })
class Trainer(BaseTrainer): def __init__(self, config): super(Trainer, self).__init__(config) self.datamanager = DataManger(config["data"]) # model self.model = Baseline( num_classes=self.datamanager.datasource.get_num_classes("train") ) # summary model summary( self.model, input_size=(3, 256, 128), batch_size=config["data"]["batch_size"], device="cpu", ) # losses cfg_losses = config["losses"] self.criterion = Softmax_Triplet_loss( num_class=self.datamanager.datasource.get_num_classes("train"), margin=cfg_losses["margin"], epsilon=cfg_losses["epsilon"], use_gpu=self.use_gpu, ) self.center_loss = CenterLoss( num_classes=self.datamanager.datasource.get_num_classes("train"), feature_dim=2048, use_gpu=self.use_gpu, ) # optimizer cfg_optimizer = config["optimizer"] self.optimizer = torch.optim.Adam( self.model.parameters(), lr=cfg_optimizer["lr"], weight_decay=cfg_optimizer["weight_decay"], ) self.optimizer_centerloss = torch.optim.SGD( self.center_loss.parameters(), lr=0.5 ) # learing rate scheduler cfg_lr_scheduler = config["lr_scheduler"] self.lr_scheduler = WarmupMultiStepLR( self.optimizer, milestones=cfg_lr_scheduler["steps"], gamma=cfg_lr_scheduler["gamma"], warmup_factor=cfg_lr_scheduler["factor"], warmup_iters=cfg_lr_scheduler["iters"], warmup_method=cfg_lr_scheduler["method"], ) # track metric self.train_metrics = MetricTracker("loss", "accuracy") self.valid_metrics = MetricTracker("loss", "accuracy") # save best accuracy for function _save_checkpoint self.best_accuracy = None # send model to device self.model.to(self.device) self.scaler = GradScaler() # resume model from last checkpoint if config["resume"] != "": self._resume_checkpoint(config["resume"]) def train(self): for epoch in range(self.start_epoch, self.epochs + 1): result = self._train_epoch(epoch) if self.lr_scheduler is not None: self.lr_scheduler.step() result = self._valid_epoch(epoch) # add scalars to tensorboard self.writer.add_scalars( "Loss", { "Train": self.train_metrics.avg("loss"), "Val": self.valid_metrics.avg("loss"), }, global_step=epoch, ) self.writer.add_scalars( "Accuracy", { "Train": self.train_metrics.avg("accuracy"), "Val": self.valid_metrics.avg("accuracy"), }, global_step=epoch, ) # logging result to console log = {"epoch": epoch} log.update(result) for key, value in log.items(): self.logger.info(" {:15s}: {}".format(str(key), value)) # save model if ( self.best_accuracy == None or self.best_accuracy < self.valid_metrics.avg("accuracy") ): self.best_accuracy = self.valid_metrics.avg("accuracy") self._save_checkpoint(epoch, save_best=True) else: self._save_checkpoint(epoch, save_best=False) # save logs self._save_logs(epoch) def _train_epoch(self, epoch): """Training step""" self.model.train() self.train_metrics.reset() with tqdm(total=len(self.datamanager.get_dataloader("train"))) as epoch_pbar: epoch_pbar.set_description(f"Epoch {epoch}") for batch_idx, (data, labels, _) in enumerate( self.datamanager.get_dataloader("train") ): # push data to device data, labels = data.to(self.device), labels.to(self.device) # zero gradient self.optimizer.zero_grad() self.optimizer_centerloss.zero_grad() with autocast(): # forward batch score, feat = self.model(data) # calculate loss and accuracy loss = ( self.criterion(score, feat, labels) + self.center_loss(feat, labels) * self.config["losses"]["beta"] ) _, preds = torch.max(score.data, dim=1) # backward parameters # loss.backward() self.scaler.scale(loss).backward() # backward parameters for center_loss for param in self.center_loss.parameters(): param.grad.data *= 1.0 / self.config["losses"]["beta"] # optimize # self.optimizer.step() self.scaler.step(self.optimizer) self.optimizer_centerloss.step() self.scaler.update() # update loss and accuracy in MetricTracker self.train_metrics.update("loss", loss.item()) self.train_metrics.update( "accuracy", torch.sum(preds == labels.data).double().item() / data.size(0), ) # update process bar epoch_pbar.set_postfix( { "train_loss": self.train_metrics.avg("loss"), "train_acc": self.train_metrics.avg("accuracy"), } ) epoch_pbar.update(1) return self.train_metrics.result() def _valid_epoch(self, epoch): """Validation step""" self.model.eval() self.valid_metrics.reset() with torch.no_grad(): with tqdm(total=len(self.datamanager.get_dataloader("val"))) as epoch_pbar: epoch_pbar.set_description(f"Epoch {epoch}") for batch_idx, (data, labels, _) in enumerate( self.datamanager.get_dataloader("val") ): # push data to device data, labels = data.to(self.device), labels.to(self.device) with autocast(): # forward batch score, feat = self.model(data) # calculate loss and accuracy loss = ( self.criterion(score, feat, labels) + self.center_loss(feat, labels) * self.config["losses"]["beta"] ) _, preds = torch.max(score.data, dim=1) # update loss and accuracy in MetricTracker self.valid_metrics.update("loss", loss.item()) self.valid_metrics.update( "accuracy", torch.sum(preds == labels.data).double().item() / data.size(0), ) # update process bar epoch_pbar.set_postfix( { "val_loss": self.valid_metrics.avg("loss"), "val_acc": self.valid_metrics.avg("accuracy"), } ) epoch_pbar.update(1) return self.valid_metrics.result() def _save_checkpoint(self, epoch, save_best=True): """save model to file""" state = { "epoch": epoch, "state_dict": self.model.state_dict(), "center_loss": self.center_loss.state_dict(), "optimizer": self.optimizer.state_dict(), "optimizer_centerloss": self.optimizer_centerloss.state_dict(), "lr_scheduler": self.lr_scheduler.state_dict(), "best_accuracy": self.best_accuracy, } filename = os.path.join(self.checkpoint_dir, "model_last.pth") self.logger.info("Saving last model: model_last.pth ...") torch.save(state, filename) if save_best: filename = os.path.join(self.checkpoint_dir, "model_best.pth") self.logger.info("Saving current best: model_best.pth ...") torch.save(state, filename) def _resume_checkpoint(self, resume_path): """Load model from checkpoint""" if not os.path.exists(resume_path): raise FileExistsError("Resume path not exist!") self.logger.info("Loading checkpoint: {} ...".format(resume_path)) checkpoint = torch.load(resume_path, map_location=self.map_location) self.start_epoch = checkpoint["epoch"] + 1 self.model.load_state_dict(checkpoint["state_dict"]) self.center_loss.load_state_dict(checkpoint["center_loss"]) self.optimizer.load_state_dict(checkpoint["optimizer"]) self.optimizer_centerloss.load_state_dict(checkpoint["optimizer_centerloss"]) self.lr_scheduler.load_state_dict(checkpoint["lr_scheduler"]) self.best_accuracy = checkpoint["best_accuracy"] self.logger.info( "Checkpoint loaded. Resume training from epoch {}".format(self.start_epoch) ) def _save_logs(self, epoch): """Save logs from google colab to google drive""" if os.path.isdir(self.logs_dir_saved): shutil.rmtree(self.logs_dir_saved) destination = shutil.copytree(self.logs_dir, self.logs_dir_saved)