コード例 #1
0
def main(args):
    # Load the arguments.
    model_dir = os.path.dirname(args.model_path)
    params = Dict2Obj(
        json.load(open(os.path.join(model_dir, "args.json"), "r")))

    # Config logging
    log_format = '%(levelname)-8s %(message)s'
    logfile = os.path.join(model_dir, 'eval.log')
    logging.basicConfig(filename=logfile,
                        level=logging.INFO,
                        format=log_format)
    logging.getLogger().addHandler(logging.StreamHandler())
    logging.info(json.dumps(args.__dict__))
    # Load vocabulary wrapper.
    vocab = load_vocab(params.vocab_path)

    # Build data loader
    logging.info("Building data loader...")

    # Load GloVe embedding.
    if params.use_glove:
        embedding = get_glove_embedding(params.embedding_name, 300, vocab)
    else:
        embedding = None

    # Processing input text
    logging.info("Processing input text...")
    text, length = process_text(args.text, vocab, max_length=20)
    d_text = text

    logging.info("Done")
    # Build the models
    logging.info('Creating IQ model...')
    model = Classifier(len(vocab),
                       embedding_dim=params.embedding_dim,
                       embedding=embedding,
                       hidden_dim=params.num_hidden_nodes,
                       output_dim=params.num_output_nodes,
                       num_layers=params.num_layers,
                       bidirectional=params.bidirectional,
                       dropout=params.dropout,
                       rnn_cell=params.rnn_cell)

    logging.info("Done")

    logging.info("Loading model.")
    model.load_state_dict(
        torch.load(args.model_path + "model-tf-" + args.state + ".pkl"))

    # Setup GPUs.
    if torch.cuda.is_available():
        logging.info("Using available GPU...")
        model.cuda()

    predict(model, d_text)
コード例 #2
0
def classification_accuracy(dataset,cls_path, cls_checkpoint, layer, fully_supervised):
    """
        Given a trained classifier, return the classification accuracy on CIFAR10 test data
    """

    args = parser.parse_args()
    dataset = args.dataset
    cls_path = args.cls_path
    cls_checkpoint = args.cls_checkpoint
    layer = args.layer


    # GPU setup
    if torch.cuda.is_available:
        device = torch.device('cuda:0')   
        batch_size = BATCH_SIZE*torch.cuda.device_count()  
    else:
        device = torch.device('cpu') 
        batch_size = BATCH_SIZE
        

    # Load classifier
    cls_file = get_cls_checkpoint(cls_path,cls_checkpoint)
    print("Checkpoint to be loaded:",cls_file)
    cls_file = checkpoint_parser(cls_file)
    fully_supervised = True if layer=='' else False
    classifier = Classifier(eval=True, layer=layer, fully_supervised=fully_supervised)
    classifier.load_state_dict(cls_file)
    classifier = nn.DataParallel(classifier).to(device)

    # Load test data
    _, _, test_batches, _ = data_loader(dataset, batch_size)

    # Accuracy evaluation
    acc = []
    test_batches = tqdm(test_batches)
    for batch, test_label in test_batches:
        batch = batch.to(device)
        y = classifier(batch)
        _, predict_label = y.max(1)
        predict_label = predict_label.to(torch.device('cpu'))
        
        # from tensor to numpy array
        predict_label = predict_label.numpy()
        test_label = test_label.numpy()
        
        batch_acc = predict_label == test_label
        batch_acc = batch_acc.tolist()
        
        
        acc += batch_acc
    
    print(np.mean(acc))
コード例 #3
0
ファイル: solver.py プロジェクト: as468579/ml2021spring
class Solver(object):
    def __init__(self, config):

        # Configurations
        self.config = config

        # Build the models
        self.build_models()

    def build_models(self):

        # Models
        self.net = Classifier().to(self.config['device'])

        # Optimizers
        self.optimizer = getattr(torch.optim, self.config['optimizer'])(
            self.net.parameters(),
            lr=self.config['lr'],
        )

        # Citerion
        self.criterion = nn.CrossEntropyLoss(reduce=False)

        # Record
        logging.info(self.net)

    def save_model(self, filename):
        save_path = os.path.join(self.config['save_path'], f'{filename}')
        try:
            logging.info(
                f'Saved best Neural network ckeckpoints into {save_path}')
            torch.save(self.net.state_dict(),
                       save_path,
                       _use_new_zipfile_serialization=False)
        except:
            logging.error(f'Error saving weights to {save_path}')

    def restore_model(self, filename):
        weight_path = os.path.join(self.config['save_path'], f'{filename}')
        try:
            logging.info(f'Loading the trained Extractor from {weight_path}')
            self.net.load_state_dict(
                torch.load(weight_path,
                           map_location=lambda storage, loc: storage))

        except:
            logging.error(f'Error loading weights from {weight_path}')
コード例 #4
0
def main():
    args = parser.parse_args()

    # classifier
    if args.classifier is not None:
        snapshot = torch.load(args.classifier, map_location=lambda s, _: s)
        classifier = Classifier(snapshot['channels'])
        classifier.load_state_dict(snapshot['model'])
    else:
        classifier = None

    # dataset
    raw_loader = torch.utils.data.DataLoader(Dataset(
        os.path.join(DATA_DIR, 'raw')),
                                             batch_size=args.batch,
                                             shuffle=True,
                                             drop_last=True)
    noised_loader = torch.utils.data.DataLoader(Dataset(
        os.path.join(DATA_DIR, 'noised_tgt')),
                                                batch_size=args.batch,
                                                shuffle=True,
                                                drop_last=True)

    # model
    generator_f = Generator(args.channels)
    generator_r = Generator(args.channels)
    discriminator_f = Discriminator(args.channels)
    discriminator_r = Discriminator(args.channels)

    # train
    trainer = Trainer(generator_f, generator_r, discriminator_f,
                      discriminator_r, classifier, args.gpu)

    for epoch in range(args.epoch):
        trainer.train(noised_loader, raw_loader, epoch < args.epoch // 10)
        print('[{}] {}'.format(epoch, trainer), flush=True)

        snapshot = {
            'channels': args.channels,
            'model': generator_f.state_dict()
        }
        torch.save(snapshot, '{}.tmp'.format(args.file))
        os.rename('{}.tmp'.format(args.file), args.file)
コード例 #5
0
ファイル: ensembler.py プロジェクト: mingming97/iMet-FGVC6
    def __init__(self, net_cfgs, test_dataloader, validate_thresh):
        self.test_dataloader = test_dataloader
        self.validate_thresh = validate_thresh
        self.net_list = []
        for cfg in net_cfgs:
            backbone_cfg = cfg.copy()
            backbone_type = backbone_cfg.pop('type')
            checkpoint = backbone_cfg.pop('checkpoint')

            if backbone_type == 'ResNet':
                backbone = ResNet(**backbone_cfg)
            elif backbone_type == 'ResNeXt':
                backbone = ResNeXt(**backbone_cfg)
            elif backbone_type == 'DenseNet':
                backbone = DenseNet(**backbone_cfg)
            classifier = Classifier(backbone, backbone.out_feat_dim).cuda()

            assert os.path.exists(checkpoint)
            state_dict = torch.load(checkpoint)
            classifier.load_state_dict(state_dict['model_params'])
            classifier.eval()
            self.net_list.append(classifier)
コード例 #6
0
    return flags


if __name__ == '__main__':
    flags = FLAGS()

    test_dataset = NCaltech101(flags.test_dataset)

    # construct loader, responsible for streaming data to gpu
    test_loader = Loader(test_dataset, flags, flags.device)

    # model, load and put to device
    model = Classifier()
    ckpt = torch.load(flags.checkpoint)
    model.load_state_dict(ckpt["state_dict"])
    model = model.to(flags.device)

    model = model.eval()
    sum_accuracy = 0
    sum_loss = 0

    print("Test step")
    for events, labels in tqdm.tqdm(test_loader):
        with torch.no_grad():
            pred_labels, _ = model(events)
            loss, accuracy = cross_entropy_loss_and_accuracy(
                pred_labels, labels)

        sum_accuracy += accuracy
        sum_loss += loss
コード例 #7
0
ファイル: train_detector.py プロジェクト: mikiwang820/MIS
data_gen = dict()
loader_name = loader_config.pop('name')
for stage in stages:
    data_loader = DataLoader(loader_name, **loader_config)
    if data_list[stage] is not None:
        data_loader.set_data_list(data_list[stage])
    data_gen[stage] = DataGenerator(data_loader, generator_config[stage])

# - GPUs
os.environ['CUDA_VISIBLE_DEVICES'] = str(config['gpus'])
torch.backends.cudnn.enabled = True

# - model
model = Classifier(out_channels=2)
if args.checkpoint is not None:
    model.load_state_dict(torch.load(args.checkpoint))
    print('Load checkpoint:', args.checkpoint)

if torch.cuda.device_count() > 0:
    model = model.cuda()
model.zero_grad()

# - optimizer
optim = Optimizer(config['optimizer'])(model)
optim.zero_grad()

weight = torch.tensor([0.1, 0.99])
if torch.cuda.device_count() > 0:
    weight = weight.cuda()
criterion = torch.nn.CrossEntropyLoss(weight)
コード例 #8
0
def main(args):
    # Load the arguments.
    model_dir = os.path.dirname(args.model_path)
    params = Dict2Obj(
        json.load(open(os.path.join(model_dir, "args.json"), "r")))

    # Config logging
    log_format = '%(levelname)-8s %(message)s'
    logfile = os.path.join(model_dir, 'eval.log')
    logging.basicConfig(filename=logfile,
                        level=logging.INFO,
                        format=log_format)
    logging.getLogger().addHandler(logging.StreamHandler())
    logging.info(json.dumps(args.__dict__))
    # Load vocabulary wrapper.
    vocab = load_vocab(params.vocab_path)

    # Build data loader
    logging.info("Building data loader...")

    # Load GloVe embedding.
    if params.use_glove:
        embedding = get_glove_embedding(params.embedding_name, 300, vocab)
    else:
        embedding = None

    # Build data loader
    logging.info("Building data loader...")
    data_loader = get_loader(args.dataset,
                             args.batch_size,
                             shuffle=False,
                             num_workers=args.num_workers,
                             max_examples=args.max_examples)
    logging.info("Done")
    # Build the models
    logging.info('Creating a multi class classification model...')
    model = Classifier(len(vocab),
                       embedding_dim=params.embedding_dim,
                       embedding=embedding,
                       hidden_dim=params.num_hidden_nodes,
                       output_dim=params.num_output_nodes,
                       num_layers=params.num_layers,
                       bidirectional=params.bidirectional,
                       dropout=params.dropout,
                       rnn_cell=params.rnn_cell)

    logging.info("Done")

    logging.info("Loading model.")
    model.load_state_dict(
        torch.load(args.model_path + "model-tf-" + args.state + ".pkl"))

    # Setup GPUs.
    if torch.cuda.is_available():
        logging.info("Using available GPU...")
        model.cuda()
    scores, gts, preds = evaluate(model, data_loader, vocab, args, params)

    # Print and save the scores.
    print(scores)
    with open(os.path.join(model_dir, args.results_path), 'w') as results_file:
        json.dump(scores, results_file)
    with open(os.path.join(model_dir, args.preds_path), 'w') as preds_file:
        json.dump(preds, preds_file)
    with open(os.path.join(model_dir, args.gts_path), 'w') as gts_file:
        json.dump(gts, gts_file)
コード例 #9
0
with open("values.json", "r") as v:
    values = json.load(v)

random.seed()

roomWidth = 9
roomHeight = 6

classes = values["classes"]

models = []

PATH = values["classifier"]
classifier = Classifier()
classifier.load_state_dict(torch.load(PATH, map_location=device))
PATH = values["comparator"]
identifier = Comparator()
identifier.load_state_dict(torch.load(PATH, map_location=device))
transform = transforms.Compose([
    transforms.Grayscale(),
    transforms.Resize(227),
    transforms.ToTensor(),
    transforms.Normalize((0.5, ), (0.5, ))
])
transform2 = transforms.Compose([
    transforms.Grayscale(),
    transforms.Resize((96, 96)),
    transforms.ToTensor(),
    transforms.Normalize((0.5, ), (0.5, ))
])
コード例 #10
0
            print("Classifier Accuracy %f | Adversarial in-bounds accuracy %f" % (total_correct/total, total_incorrect_inbds/total))
    except OSError as e:
#         print(e)
#         print(total, total_correct, total_inbds, total_correct_inbds)
        return total, total_correct/total, total_incorrect_inbds/total
    except Exception as e:
        print("Error", e)


if __name__ == "__main__":    
    norms = [1.0, 2.5, 3.0, 3.5]
    methods = ['vanilla', 'classification', 'proxi_dist', 'combined', 'identity']

    cla = Classifier(args)
    classifier_pt = torch.load('classifier.pt')
    cla.load_state_dict(classifier_pt)
    cla.eval()

    for method in methods:
        print(method)
        model = MADVAE(args)
        model_pt = torch.load(
            f'../pretrained_model/{method}/params.pt')
        model.load_state_dict(model_pt)
        model.eval()

        if torch.cuda.is_available():
            print("Using CUDA")
            model = model.cuda()
            cla = cla.cuda()
コード例 #11
0
class Agent():
    def __init__(self, state_size, action_size, config):
        self.seed = config["seed"]
        torch.manual_seed(self.seed)
        np.random.seed(seed=self.seed)
        random.seed(self.seed)
        self.env = gym.make(config["env_name"])
        self.env.seed(self.seed)
        self.state_size = state_size
        self.action_size = action_size
        self.clip = config["clip"]
        self.device = 'cuda'
        print("Clip ", self.clip)
        print("cuda ", torch.cuda.is_available())
        self.double_dqn = config["DDQN"]
        print("Use double dqn", self.double_dqn)
        self.lr_pre = config["lr_pre"]
        self.batch_size = config["batch_size"]
        self.lr = config["lr"]
        self.tau = config["tau"]
        print("self tau", self.tau)
        self.gamma = 0.99
        self.target_entropy = -torch.prod(torch.Tensor(action_size).to(self.device)).item()
        self.fc1 = config["fc1_units"]
        self.fc2 = config["fc2_units"]
        self.log_alpha = torch.zeros(1, requires_grad=True, device=self.device)
        self.alpha = self.log_alpha.exp()
        self.alpha_optim = optim.Adam([self.log_alpha], lr=config["lr_alpha"])
        self.policy = SACActor(state_size, action_size, self.seed).to(self.device)
        self.policy_optim = optim.Adam(self.policy.parameters(), lr=config["lr_policy"])
        
        self.qnetwork_local = QNetwork(state_size, action_size, self.seed, self.fc1, self.fc2).to(self.device)
        self.qnetwork_target = QNetwork(state_size, action_size, self.seed, self.fc1, self.fc2).to(self.device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=self.lr)
        self.soft_update(self.qnetwork_local, self.qnetwork_target, 1)
        
        self.q_shift_local = SQNetwork(state_size, action_size, self.seed, self.fc1, self.fc2).to(self.device)
        self.q_shift_target = SQNetwork(state_size, action_size,self.seed, self.fc1, self.fc2).to(self.device)
        self.optimizer_shift = optim.Adam(self.q_shift_local.parameters(), lr=self.lr)
        self.soft_update(self.q_shift_local, self.q_shift_target, 1)
         
        self.R_local = SQNetwork(state_size, action_size, self.seed,  self.fc1, self.fc2).to(self.device)
        self.R_target = SQNetwork(state_size, action_size, self.seed, self.fc1, self.fc2).to(self.device)
        self.optimizer_r = optim.Adam(self.R_local.parameters(), lr=self.lr)
        self.soft_update(self.R_local, self.R_target, 1) 

        self.steps = 0
        self.predicter = Classifier(state_size, action_size, self.seed, 256, 256).to(self.device)
        self.optimizer_pre = optim.Adam(self.predicter.parameters(), lr=self.lr_pre)
        pathname = "lr_{}_batch_size_{}_fc1_{}_fc2_{}_seed_{}".format(self.lr, self.batch_size, self.fc1, self.fc2, self.seed)
        pathname += "_clip_{}".format(config["clip"])
        pathname += "_tau_{}".format(config["tau"])
        now = datetime.now()    
        dt_string = now.strftime("%d_%m_%Y_%H:%M:%S")
        pathname += dt_string
        tensorboard_name = str(config["locexp"]) + '/runs/' + pathname
        self.vid_path = str(config["locexp"]) + '/vid'
        self.writer = SummaryWriter(tensorboard_name)
        print("summery writer ", tensorboard_name)
        self.average_prediction = deque(maxlen=100)
        self.average_same_action = deque(maxlen=100)
        self.all_actions = []
        for a in range(self.action_size):
            action = torch.Tensor(1) * 0 +  a
            self.all_actions.append(action.to(self.device))
    
    def learn(self, memory_ex, memory_all):
        self.steps += 1
        logging.debug("--------------------------New update-----------------------------------------------")
        states, next_states, actions, dones = memory_ex.expert_policy(self.batch_size)
        self.state_action_frq(states, actions)
        states, next_states, actions, dones = memory_all.expert_policy(self.batch_size)
        self.compute_shift_function(states, next_states, actions, dones)
        self.compute_r_function(states, actions)
        self.compute_q_function(states, next_states, actions, dones)
        self.soft_update(self.R_local, self.R_target, self.tau)
        self.soft_update(self.q_shift_local, self.q_shift_target, self.tau)
        self.soft_update(self.qnetwork_local, self.qnetwork_target, self.tau)         
        return
        
        
    
    def compute_q_function(self, states, next_states, actions, dones):
        """Update value parameters using given batch of experience tuples.
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        qf1, qf2 = self.qnetwork_local(states)
        q_value1 = qf1.gather(1, actions)
        q_value2 = qf2.gather(1, actions)
        
        with torch.no_grad():
            q1_target, q2_target = self.qnetwork_target(next_states)
            min_q_target = torch.min(q1_target, q2_target)
            next_action_prob, next_action_log_prob = self.policy(next_states)
            next_q_target = (next_action_prob * (min_q_target - self.alpha * next_action_log_prob)).sum(dim=1, keepdim=True)
            rewards = self.R_target(states).detach().gather(1, actions.detach()).squeeze(0)
            Q_targets = rewards + ((1 - dones) * self.gamma * next_q_target)
        
        loss = F.mse_loss(q_value2, Q_targets.detach()) + F.mse_loss(q_value1, Q_targets.detach())
        
        # Get max predicted Q values (for next states) from target model
        
        self.writer.add_scalar('losss/q_loss', loss, self.steps)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        # torch.nn.utils.clip_grad_norm_(self.qnetwork_local.parameters(), 1)
        self.optimizer.step()

        # --------------------------update-policy--------------------------------------------------------
        action_prob, log_action_prob = self.policy(states)
        with torch.no_grad():
            q_pi1, q_pi2 = self.qnetwork_local(states)
            min_q_values = torch.min(q_pi1, q_pi2)
        #policy_loss = (action_prob *  ((self.alpha * log_action_prob) - min_q_values).detach()).sum(dim=1).mean()
        policy_loss = (action_prob *  ((self.alpha * log_action_prob) - min_q_values)).sum(dim=1).mean()
        self.policy_optim.zero_grad()
        policy_loss.backward()
        self.policy_optim.step()
        self.writer.add_scalar('loss/policy', policy_loss, self.steps)

        # --------------------------update-alpha--------------------------------------------------------
        alpha_loss =(action_prob.detach() *  (-self.log_alpha * (log_action_prob + self.target_entropy).detach())).sum(dim=1).mean()
        self.alpha_optim.zero_grad()
        alpha_loss.backward()
        self.alpha_optim.step()
        self.writer.add_scalar('loss/alpha', alpha_loss, self.steps)
        self.alpha = self.log_alpha.exp()
        

    def compute_shift_function(self, states, next_states, actions, dones):
        """Update value parameters using given batch of experience tuples.
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        actions = actions.type(torch.int64)
        with torch.no_grad():
            # Get max predicted Q values (for next states) from target model
            #if self.double_dqn:
            qt1, qt2 = self.qnetwork_local(next_states)
            q_min = torch.min(qt1, qt2)
            max_q, max_actions = q_min.max(1)
            Q_targets_next1, Q_targets_next2 = self.qnetwork_target(next_states)
            Q_targets_next = torch.min(Q_targets_next1, Q_targets_next2)
            Q_targets_next = Q_targets_next.gather(1, max_actions.type(torch.int64).unsqueeze(1))
            #else:
            #Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)
            # Compute Q targets for current states
            Q_targets = self.gamma * Q_targets_next * (dones)

        # Get expected Q values from local model
        Q_expected = self.q_shift_local(states).gather(1, actions)
        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets.detach())
        # Minimize the loss
        self.optimizer_shift.zero_grad()
        loss.backward()
        self.writer.add_scalar('Shift_loss', loss, self.steps)
        self.optimizer_shift.step()
    
    
    def compute_r_function(self, states, actions, debug=False, log=False):
        actions = actions.type(torch.int64)
        # sum all other actions
        # print("state shape ", states.shape)
        size = states.shape[0]
        idx = 0
        all_zeros = [1 for i in range(actions.shape[0])]
        zeros = False
        y_shift = self.q_shift_target(states).gather(1, actions).detach()
        log_a = self.get_action_prob(states, actions).detach()
        y_r_part1 = log_a - y_shift
        y_r_part2 = torch.empty((size, 1), dtype=torch.float32).to(self.device)
        for a, s in zip(actions, states):
            y_h = 0
            taken_actions = 0
            for b in self.all_actions:
                b = b.type(torch.int64).unsqueeze(1)
                n_b = self.get_action_prob(s.unsqueeze(0), b)
                if torch.eq(a, b) or n_b is None:
                    continue
                taken_actions += 1
                y_s = self.q_shift_target(s.unsqueeze(0)).detach().gather(1, b).item()
                n_b = n_b.data.item() - y_s
                r_hat = self.R_target(s.unsqueeze(0)).gather(1, b).item()
                y_h += (r_hat - n_b)
                if log:
                    text = "a {} r _hat {:.2f} - n_b  {:.2f} | sh {:.2f} ".format(b.item(), r_hat, n_b, y_s)
                    logging.debug(text)
            if taken_actions == 0:
                all_zeros[idx] = 0
                zeros = True
                y_r_part2[idx] = 0.0
            else:
                y_r_part2[idx] = (1. / taken_actions) * y_h
            idx += 1
            y_r = y_r_part1 + y_r_part2
        # check if there are zeros (no update for this tuble) remove them from states and
        if zeros:
            #print(all_zeros)
            #print(states)
            #print(actions)
            mask = torch.BoolTensor(all_zeros)
            states = states[mask]
            actions = actions[mask]
            y_r = y_r[mask]

        y = self.R_local(states).gather(1, actions)
        if log:
            text = "Action {:.2f} r target {:.2f} =  n_a {:.2f} + n_b {:.2f}  y {:.2f}".format(actions[0].item(), y_r[0].item(), y_r_part1[0].item(), y_r_part2[0].item(), y[0].item()) 
            logging.debug(text)


        r_loss = F.mse_loss(y, y_r.detach())

        # sys.exit()
        # Minimize the loss
        self.optimizer_r.zero_grad()
        r_loss.backward()
        # torch.nn.utils.clip_grad_norm_(self.R_local.parameters(), 5)
        self.optimizer_r.step()
        self.writer.add_scalar('Reward_loss', r_loss, self.steps)

    
    
    
    def get_action_prob(self, states, actions):
        """
        """
        actions = actions.type(torch.long)
        # check if action prob is zero
        output = self.predicter(states)
        output = F.softmax(output, dim=1)
        action_prob = output.gather(1, actions)
        action_prob = action_prob + torch.finfo(torch.float32).eps
        # check if one action if its to small
        if action_prob.shape[0] == 1:
            if action_prob.cpu().detach().numpy()[0][0] < 1e-4:
                return None
        action_prob = torch.log(action_prob)
        action_prob = torch.clamp(action_prob, min= self.clip, max=0)
        return action_prob


    def state_action_frq(self, states, action):
        """ Train classifer to compute state action freq
        """
        self.predicter.train()
        output = self.predicter(states, train=True)
        output = output.squeeze(0)
        # logging.debug("out predicter {})".format(output))

        y = action.type(torch.long).squeeze(1)
        #print("y shape", y.shape)
        loss = nn.CrossEntropyLoss()(output, y)
        self.optimizer_pre.zero_grad()
        loss.backward()
        #torch.nn.utils.clip_grad_norm_(self.predicter.parameters(), 1)
        self.optimizer_pre.step()
        self.writer.add_scalar('Predict_loss', loss, self.steps)
        self.predicter.eval()


    def test_predicter(self, memory):
        """

        """
        self.predicter.eval()
        same_state_predition = 0
        for i in range(memory.idx):
            states = memory.obses[i]
            actions = memory.actions[i]
        
            states = torch.as_tensor(states, device=self.device).unsqueeze(0)
            actions = torch.as_tensor(actions, device=self.device)
            output = self.predicter(states)   
            output = F.softmax(output, dim=1)
            #print("state 0", output.data)
            # create one hot encode y from actions
            y = actions.type(torch.long).item()
            p = torch.argmax(output.data).item()
            #print("a {}  p {}".format(y, p))
            text = "r  {}".format(self.R_local(states.detach()).detach()) 
            #print(text)
            if y==p:
                same_state_predition += 1
        text = "Same prediction {} of {} ".format(same_state_predition, memory.idx)
        print(text)
        logging.debug(text)




    def soft_update(self, local_model, target_model, tau=4):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter
        """
        # print("use tau", tau)
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
    
    def load(self, filename):
        self.predicter.load_state_dict(torch.load(filename + "_predicter.pth"))
        self.optimizer_pre.load_state_dict(torch.load(filename + "_predicter_optimizer.pth"))
        self.R_local.load_state_dict(torch.load(filename + "_r_net.pth"))
        self.qnetwork_local.load_state_dict(torch.load(filename + "_q_net.pth"))
        
        print("Load models to {}".format(filename))


    def save(self, filename):
        """
        """
        mkdir("", filename)
        torch.save(self.predicter.state_dict(), filename + "_predicter.pth")
        torch.save(self.optimizer_pre.state_dict(), filename + "_predicter_optimizer.pth")
        torch.save(self.qnetwork_local.state_dict(), filename + "_q_net.pth")
        torch.save(self.optimizer.state_dict(), filename + "_q_net_optimizer.pth")
        torch.save(self.R_local.state_dict(), filename + "_r_net.pth")
        torch.save(self.q_shift_local.state_dict(), filename + "_q_shift_net.pth")

        print("save models to {}".format(filename))

    def test_q_value(self, memory):
        test_elements = memory.idx
        all_diff = 0
        error = True
        used_elements_r = 0
        used_elements_q = 0
        r_error = 0
        q_error = 0
        for i in range(test_elements):
            states = memory.obses[i]
            actions = memory.actions[i]
            states = torch.as_tensor(states, device=self.device).unsqueeze(0)
            actions = torch.as_tensor(actions, device=self.device)
            one_hot = torch.Tensor([0 for i in range(self.action_size)], device="cpu")
            one_hot[actions.item()] = 1
            with torch.no_grad():
                r_values = self.R_local(states)
                q_values1, q_values2 = self.qnetwork_local(states)
                q_values = torch.min(q_values1, q_values2)
                soft_r = F.softmax(r_values, dim=1).to("cpu")
                soft_q = F.softmax(q_values, dim=1).to("cpu")
                actions = actions.type(torch.int64)
                kl_q =  F.kl_div(soft_q.log(), one_hot, None, None, 'sum')
                kl_r =  F.kl_div(soft_r.log(), one_hot, None, None, 'sum')
                if kl_r == float("inf"):
                    pass
                else:
                    r_error += kl_r
                    used_elements_r += 1
                if kl_q == float("inf"):
                    pass
                else:
                    q_error += kl_q
                    used_elements_q += 1
                    
        average_q_kl = q_error / used_elements_q
        average_r_kl = r_error / used_elements_r
        text = "Kl div of Reward {} of {} elements".format(average_q_kl, used_elements_r)
        print(text)
        text = "Kl div of Q_values {} of {} elements".format(average_r_kl, used_elements_q)
        print(text)
        self.writer.add_scalar('KL_reward', average_r_kl, self.steps)
        self.writer.add_scalar('KL_q_values', average_q_kl, self.steps)


    def act(self, state):
        with torch.no_grad():
            state = torch.FloatTensor(state).to(self.device).unsqueeze(0)
            action_prob, _ = self.policy(state)
            action = torch.argmax(action_prob)
            action = action.cpu().numpy()
        return action 


    def eval_policy(self, record=False, eval_episodes=4):
        if record:
            env = wrappers.Monitor(self.env, str(self.vid_path) + "/{}".format(self.steps), video_callable=lambda episode_id: True, force=True)
        else:
            env = self.env

        average_reward = 0
        scores_window = deque(maxlen=100)
        s = 0
        for i_epiosde in range(eval_episodes):
            episode_reward = 0
            state = env.reset()
            while True:
                s += 1
                action = self.act(state)
                state, reward, done, _ = env.step(action)
                episode_reward += reward
                if done:
                    break
            scores_window.append(episode_reward)
        if record:
            return 
        average_reward = np.mean(scores_window)
        print("Eval Episode {}  average Reward {} ".format(eval_episodes, average_reward))
        self.writer.add_scalar('Eval_reward', average_reward, self.steps)
コード例 #12
0
def run_infer(opt):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    n_classes = 6
    weight_path = opt.weight_path
    tst_preds = []

    TEST_DIR = opt.test_dir
    test = pd.DataFrame()
    # test['image_id'] = sorted(list(os.listdir(TEST_DIR)))
    content = pd.read_csv('/content/test_aug.csv')
    test_image = []

    for i in content["image_id"]:
        test_image.append(i)

    test['image_id'] = sorted(test_image)

    if "vit" in opt.model_arch:
        testset = ICDARDataset(test,
                               TEST_DIR,
                               transforms=get_inference_transforms(384))
    else:
        testset = ICDARDataset(test,
                               TEST_DIR,
                               transforms=get_inference_transforms(
                                   opt.img_size))

    tst_loader = DataLoader(testset,
                            batch_size=opt.valid_bs,
                            num_workers=opt.num_workers,
                            shuffle=False,
                            pin_memory=False)

    print("[INFO] Found {} folds in weight path".format(
        len(os.listdir(weight_path))))
    print(os.listdir(weight_path))

    print("[INFO] Start inference ...")
    # for fold in os.listdir(weight_path):
    #     print(fold)
    #     model = Classifier(opt.model_arch, n_classes).to(device)
    #     model_path = os.path.join(weight_path, fold, "best.pt")
    #     model.load_state_dict(torch.load(model_path)['model'])

    #     with torch.no_grad():
    #         for _ in range(opt.tta):
    #             tst_preds += [inference_one_epoch(model, tst_loader, device)]

    #     del model
    model = Classifier(opt.model_arch, n_classes).to(device)
    model_path = '/content/drive/MyDrive/Emotion_Speech_Recognition/Models/Classify_image/resnet/best.pt'
    model.load_state_dict(torch.load(model_path)['model'])

    with torch.no_grad():
        for _ in range(opt.tta):
            tst_preds += [inference_one_epoch(model, tst_loader, device)]

    del model

    avg_tst_preds = np.mean(tst_preds, axis=0)
    if not (os.path.isdir(opt.work_dir)):
        os.mkdir(opt.work_dir)

    # np.save(os.path.join(opt.work_dir, "{}.npy".format(opt.model_arch)), avg_tst_preds)
    test['predict'] = np.argmax(avg_tst_preds, axis=1)

    gt = []
    for i in content["image_id"]:
        gt.append(i.split('/')[0])
    test['gt'] = gt

    test.to_csv('submission.csv', index=False)

    torch.cuda.empty_cache()
コード例 #13
0
ファイル: test_classifier.py プロジェクト: Derek-Wds/MAD-VAE
    # load data
    transform = transforms.Compose(
        [transforms.CenterCrop(args.image_size),
         transforms.ToTensor()])
    testset = datasets.MNIST('./data',
                             train=False,
                             download=True,
                             transform=transform)
    dataloader = torch.utils.data.DataLoader(testset,
                                             batch_size=args.batch_size,
                                             shuffle=True,
                                             num_workers=1)

    model = Classifier(args)
    model_pt = torch.load(args.save_path)
    model.load_state_dict(model_pt)
    model.eval()

    correct = 0
    total = 0
    for data, label in dataloader:
        if torch.cuda.is_available():
            model = model.cuda()
            data = data.cuda()
            label = label.cuda()

        outputs = model(data)
        _, predicted = torch.max(outputs.data, 1)
        total += label.size(0)
        correct += (predicted == label).sum().item()
コード例 #14
0
n_frames = 30
n_vid_features = 3600
n_aud_features = 1
n_head = 3
n_layers = 3
dim_feedforward = 128

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

autoencoder = Autoencoder()
autoencoder.load_state_dict(torch.load(AUTOENCODER))
autoencoder.to(device)
autoencoder.eval()

model = Classifier(n_vid_features, n_aud_features, n_head, n_layers, dim_feedforward)
model.load_state_dict(torch.load(CLASSIFIER))
model = model.to(device)
model.eval()

start_time = datetime.datetime.now()
print(f'start time: {str(start_time)}')
print(f'using device: {device}')

count = 0
count_wrong = 0

val_dataset = EncodedDeepfakeDataset(VAL_FOLDERS, autoencoder.encoder, n_frames=n_frames, n_audio_reads=576, device=device, cache_folder="encode_cache")
dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True)
for i, batch in enumerate(dataloader):
    if i * batch_size >= test_size:
        break
コード例 #15
0
def train_sentiment(opts):
    
    device = torch.device("cuda" if use_cuda else "cpu")

    glove_loader = GloveLoader(os.path.join(opts.data_dir, 'glove', opts.glove_emb_file))
    train_loader = DataLoader(RottenTomatoesReviewDataset(opts.data_dir, 'train', glove_loader, opts.maxlen), \
        batch_size=opts.bsize, shuffle=True, num_workers=opts.nworkers)
    valid_loader = DataLoader(RottenTomatoesReviewDataset(opts.data_dir, 'val', glove_loader, opts.maxlen), \
        batch_size=opts.bsize, shuffle=False, num_workers=opts.nworkers)
    model = Classifier(opts.hidden_size, opts.dropout_p, glove_loader, opts.enc_arch)

    if opts.optim == 'adam':
        optimizer = torch.optim.Adam(model.parameters(), lr=opts.lr, weight_decay=opts.wd)
    else:
        raise NotImplementedError("Unknown optim type")

    criterion = nn.CrossEntropyLoss()

    start_n_iter = 0
    # for choosing the best model
    best_val_acc = 0.0

    model_path = os.path.join(opts.save_path, 'model_latest.net')
    if opts.resume and os.path.exists(model_path):
        # restoring training from save_state
        print ('====> Resuming training from previous checkpoint')
        save_state = torch.load(model_path, map_location='cpu')
        model.load_state_dict(save_state['state_dict'])
        start_n_iter = save_state['n_iter']
        best_val_acc = save_state['best_val_acc']
        opts = save_state['opts']
        opts.start_epoch = save_state['epoch'] + 1

    model = model.to(device)

    # for logging
    logger = TensorboardXLogger(opts.start_epoch, opts.log_iter, opts.log_dir)
    logger.set(['acc', 'loss'])
    logger.n_iter = start_n_iter

    for epoch in range(opts.start_epoch, opts.epochs):
        model.train()
        logger.step()

        for batch_idx, data in enumerate(train_loader):
            acc, loss = run_iter(opts, data, model, criterion, device)

            # optimizer step
            optimizer.zero_grad()
            loss.backward()
            nn.utils.clip_grad_norm_(model.parameters(), opts.max_norm)
            optimizer.step()

            logger.update(acc, loss)

        val_loss, val_acc, time_taken = evaluate(opts, model, valid_loader, criterion, device)
        # log the validation losses
        logger.log_valid(time_taken, val_acc, val_loss)
        print ('')

        # Save the model to disk
        if val_acc >= best_val_acc:
            best_val_acc = val_acc
            save_state = {
                'epoch': epoch,
                'state_dict': model.state_dict(),
                'optimizer': optimizer.state_dict(),
                'n_iter': logger.n_iter,
                'opts': opts,
                'val_acc': val_acc,
                'best_val_acc': best_val_acc
            }
            model_path = os.path.join(opts.save_path, 'model_best.net')
            torch.save(save_state, model_path)

        save_state = {
            'epoch': epoch,
            'state_dict': model.state_dict(),
            'optimizer': optimizer.state_dict(),
            'n_iter': logger.n_iter,
            'opts': opts,
            'val_acc': val_acc,
            'best_val_acc': best_val_acc
        }
        model_path = os.path.join(opts.save_path, 'model_latest.net')
        torch.save(save_state, model_path)
コード例 #16
0
            'optimizer': optimizer.state_dict(),
            'global_count': global_count
        }

        torch.save(state, osp.join(args.save_path, filename))
        if is_best:
            shutil.copyfile(osp.join(args.save_path, filename),
                            osp.join(args.save_path, 'model_best.pth.tar'))

    if args.resume == True:
        # load checkpoint
        state = torch.load(osp.join(args.save_path, 'model_best.pth.tar'))
        init_epoch = state['epoch']
        resumed_state = state['state_dict']
        # resumed_state = {'module.'+k:v for k,v in resumed_state.items()}
        model.load_state_dict(resumed_state)
        trlog = state['trlog']
        optimizer.load_state_dict(state['optimizer'])
        initial_lr = optimizer.param_groups[0]['lr']
        global_count = state['global_count']
    else:
        init_epoch = 1
        trlog = {}
        trlog['args'] = vars(args)
        trlog['train_loss'] = []
        trlog['val_loss_dist'] = []
        trlog['val_loss_sim'] = []
        trlog['train_acc'] = []
        trlog['val_acc_sim'] = []
        trlog['val_acc_dist'] = []
        trlog['max_acc_dist'] = 0.0
コード例 #17
0
class Agent():
    def __init__(self, state_size, action_size, config):
        self.env_name = config["env_name"]
        self.state_size = state_size
        self.action_size = action_size
        self.seed = config["seed"]
        self.clip = config["clip"]
        self.device = 'cuda'
        print("Clip ", self.clip)
        print("cuda ", torch.cuda.is_available())
        self.double_dqn = config["DDQN"]
        print("Use double dqn", self.double_dqn)
        self.lr_pre = config["lr_pre"]
        self.batch_size = config["batch_size"]
        self.lr = config["lr"]
        self.tau = config["tau"]
        print("self tau", self.tau)
        self.gamma = 0.99
        self.fc1 = config["fc1_units"]
        self.fc2 = config["fc2_units"]
        self.fc3 = config["fc3_units"]
        self.qnetwork_local = QNetwork(state_size, action_size, self.fc1, self.fc2, self.fc3, self.seed).to(self.device)
        self.qnetwork_target = QNetwork(state_size, action_size, self.fc1, self.fc2,self.fc3,  self.seed).to(self.device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=self.lr)
        self.soft_update(self.qnetwork_local, self.qnetwork_target, 1)
        
        self.q_shift_local = QNetwork(state_size, action_size, self.fc1, self.fc2, self.fc3, self.seed).to(self.device)
        self.q_shift_target = QNetwork(state_size, action_size, self.fc1, self.fc2, self.fc3, self.seed).to(self.device)
        self.optimizer_shift = optim.Adam(self.q_shift_local.parameters(), lr=self.lr)
        self.soft_update(self.q_shift_local, self.q_shift_target, 1)
         
        self.R_local = QNetwork(state_size, action_size, self.fc1, self.fc2, self.fc3,  self.seed).to(self.device)
        self.R_target = QNetwork(state_size, action_size, self.fc1, self.fc2, self.fc3, self.seed).to(self.device)
        self.optimizer_r = optim.Adam(self.R_local.parameters(), lr=self.lr)
        self.soft_update(self.R_local, self.R_target, 1) 

        self.expert_q = DQNetwork(state_size, action_size, seed=self.seed).to(self.device)
        self.expert_q.load_state_dict(torch.load('checkpoint.pth'))
        self.memory = Memory(action_size, config["buffer_size"], self.batch_size, self.seed, self.device)
        self.t_step = 0
        self.steps = 0
        self.predicter = Classifier(state_size, action_size, self.seed).to(self.device)
        self.optimizer_pre = optim.Adam(self.predicter.parameters(), lr=self.lr_pre)
        pathname = "lr_{}_batch_size_{}_fc1_{}_fc2_{}_fc3_{}_seed_{}".format(self.lr, self.batch_size, self.fc1, self.fc2, self.fc3, self.seed)
        pathname += "_clip_{}".format(config["clip"])
        pathname += "_tau_{}".format(config["tau"])
        now = datetime.now()    
        dt_string = now.strftime("%d_%m_%Y_%H:%M:%S")
        pathname += dt_string
        tensorboard_name = str(config["locexp"]) + '/runs/' + pathname
        self.writer = SummaryWriter(tensorboard_name)
        print("summery writer ", tensorboard_name)
        self.average_prediction = deque(maxlen=100)
        self.average_same_action = deque(maxlen=100)
        self.all_actions = []
        for a in range(self.action_size):
            action = torch.Tensor(1) * 0 +  a
            self.all_actions.append(action.to(self.device))
    
    
    def learn(self, memory):
        logging.debug("--------------------------New episode-----------------------------------------------")
        states, next_states, actions, dones = memory.expert_policy(self.batch_size)
        self.steps += 1
        self.state_action_frq(states, actions)
        self.compute_shift_function(states, next_states, actions, dones)
        for i in range(1):
            for a in range(self.action_size):
                action =  torch.ones([self.batch_size, 1], device= self.device) * a
                self.compute_r_function(states, action)

        self.compute_q_function(states, next_states, actions, dones)
        self.soft_update(self.q_shift_local, self.q_shift_target, self.tau)
        self.soft_update(self.R_local, self.R_target, self.tau)
        self.soft_update(self.qnetwork_local, self.qnetwork_target, self.tau)
        return
    
    def learn_predicter(self, memory):
        """

        """
        states, next_states, actions, dones = memory.expert_policy(self.batch_size)
        self.state_action_frq(states, actions)
    
    def state_action_frq(self, states, action):
        """ Train classifer to compute state action freq
        """ 
        self.predicter.train()
        output = self.predicter(states, train=True)
        output = output.squeeze(0)
        # logging.debug("out predicter {})".format(output))

        y = action.type(torch.long).squeeze(1)
        #print("y shape", y.shape)
        loss = nn.CrossEntropyLoss()(output, y)
        self.optimizer_pre.zero_grad()
        loss.backward()
        #torch.nn.utils.clip_grad_norm_(self.predicter.parameters(), 1)
        self.optimizer_pre.step()
        self.writer.add_scalar('Predict_loss', loss, self.steps)
        self.predicter.eval()

    def test_predicter(self, memory):
        """

        """
        self.predicter.eval()
        same_state_predition = 0
        for i in range(memory.idx):
            states = memory.obses[i]
            actions = memory.actions[i]
        
            states = torch.as_tensor(states, device=self.device).unsqueeze(0)
            actions = torch.as_tensor(actions, device=self.device)
            output = self.predicter(states)   
            output = F.softmax(output, dim=1)
            # create one hot encode y from actions
            y = actions.type(torch.long).item()
            p =torch.argmax(output.data).item()
            if y==p:
                same_state_predition += 1

        
        #self.average_prediction.append(same_state_predition)
        #average_pred = np.mean(self.average_prediction)
        #self.writer.add_scalar('Average prediction acc', average_pred, self.steps)
        #logging.debug("Same prediction {} of 100".format(same_state_predition))
        text = "Same prediction {} of {} ".format(same_state_predition, memory.idx)
        print(text)
        # self.writer.add_scalar('Action prediction acc', same_state_predition, self.steps)
        self.predicter.train()


    def get_action_prob(self, states, actions):
        """
        """
        actions = actions.type(torch.long)
        # check if action prob is zero
        output = self.predicter(states)
        output = F.softmax(output, dim=1)
        # print("get action_prob ", output) 
        # output = output.squeeze(0)
        action_prob = output.gather(1, actions)
        action_prob = action_prob + torch.finfo(torch.float32).eps
        # check if one action if its to small
        if action_prob.shape[0] == 1:
            if action_prob.cpu().detach().numpy()[0][0] < 1e-4:
                return None
        # logging.debug("action_prob {})".format(action_prob))
        action_prob = torch.log(action_prob)
        action_prob = torch.clamp(action_prob, min= self.clip, max=0)
        return action_prob

    def compute_shift_function(self, states, next_states, actions, dones):
        """Update value parameters using given batch of experience tuples.
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        actions = actions.type(torch.int64)
        with torch.no_grad():
            # Get max predicted Q values (for next states) from target model
            if self.double_dqn:
                qt = self.q_shift_local(next_states)
                max_q, max_actions = qt.max(1)
                Q_targets_next = self.qnetwork_target(next_states).gather(1, max_actions.unsqueeze(1))
            else:
                Q_targets_next = self.qnetwork_target(next_states).max(1)[0].unsqueeze(1)
            # Compute Q targets for current states
            Q_targets = (self.gamma * Q_targets_next * (dones))

        # Get expected Q values from local model
        Q_expected = self.q_shift_local(states).gather(1, actions)

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer_shift.zero_grad()
        loss.backward()
        self.writer.add_scalar('Shift_loss', loss, self.steps)
        self.optimizer_shift.step()


    def compute_r_function(self, states, actions, debug=False, log=False):
        """

        """
        actions = actions.type(torch.int64)
        
        # sum all other actions
        # print("state shape ", states.shape)
        size = states.shape[0]
        idx = 0
        all_zeros = []
        with torch.no_grad():
            y_shift = self.q_shift_target(states).gather(1, actions)
            log_a = self.get_action_prob(states, actions)
            index_list = index_None_value(log_a)
            # print("is none", index_list)
            if index_list is None:
                return


            y_r_part1 = log_a - y_shift
            y_r_part2 =  torch.empty((size, 1), dtype=torch.float32).to(self.device)
            for a, s in zip(actions, states):
                y_h = 0
                taken_actions = 0
                for b in self.all_actions:
                    b = b.type(torch.int64).unsqueeze(1)
                    n_b = self.get_action_prob(s.unsqueeze(0), b)
                    if torch.eq(a, b) or n_b is None:
                        logging.debug("best action {} ".format(a))
                        logging.debug("n_b action {} ".format(b))
                        logging.debug("n_b {} ".format(n_b))
                        continue
                    taken_actions += 1
                    r_hat = self.R_target(s.unsqueeze(0)).gather(1, b)

                    y_s = self.q_shift_target(s.unsqueeze(0)).gather(1, b)
                    n_b = n_b - y_s

                    y_h += (r_hat - n_b)
                    if debug:
                        print("action", b.item())
                        print("r_pre {:.3f}".format(r_hat.item()))
                        print("n_b {:.3f}".format(n_b.item()))
                if taken_actions == 0:
                    all_zeros.append(idx)
                else:
                    y_r_part2[idx] = (1. / taken_actions)  * y_h
                idx += 1
            #print(y_r_part2, y_r_part1)
            y_r = y_r_part1 + y_r_part2
            #print("_________________")
            #print("r update zeros ", len(all_zeros))
        if len(index_list) > 0:
            print("none list", index_list)
        y = self.R_local(states).gather(1, actions)
        if log:
            text = "Action {:.2f}  y target {:.2f} =  n_a {:.2f} + {:.2f} and pre{:.2f}".format(actions.item(), y_r.item(), y_r_part1.item(), y_r_part2.item(), y.item())
            logging.debug(text)

        if debug:
            print("expet action ", actions.item())
            # print("y r {:.3f}".format(y.item()))
            # print("log a prob {:.3f}".format(log_a.item()))
            # print("n_a {:.3f}".format(y_r_part1.item()))
            print("Correct action p {:.3f} ".format(y.item()))
            print("Correct action target {:.3f} ".format(y_r.item()))
            print("part1 corret action {:.2f} ".format(y_r_part1.item()))
            print("part2 incorret action {:.2f} ".format(y_r_part2.item()))
        
        #print("y", y.shape)
        #print("y_r", y_r.shape)
        
        r_loss = F.mse_loss(y, y_r)
        
        #con = input()
        #sys.exit()
        # Minimize the loss
        self.optimizer_r.zero_grad()
        r_loss.backward()
        #torch.nn.utils.clip_grad_norm_(self.R_local.parameters(), 5)
        self.optimizer_r.step()
        self.writer.add_scalar('Reward_loss', r_loss, self.steps)
        if debug:
            print("after update r pre ", self.R_local(states).gather(1, actions).item())
            print("after update r target ", self.R_target(states).gather(1, actions).item())
        # ------------------- update target network ------------------- #
        #self.soft_update(self.R_local, self.R_target, 5e-3)
        if debug:
            print("after soft upda r target ", self.R_target(states).gather(1, actions).item())
    
    def compute_q_function(self, states, next_states, actions, dones, debug=False, log= False):
        """Update value parameters using given batch of experience tuples.
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        actions = actions.type(torch.int64)
        if debug:
            print("---------------q_update------------------")
            print("expet action ", actions.item())
            print("state ", states)
        with torch.no_grad():
            # Get max predicted Q values (for next states) from target model
            if self.double_dqn:
                qt = self.qnetwork_local(next_states)
                max_q, max_actions = qt.max(1)
                Q_targets_next = self.qnetwork_target(next_states).gather(1, max_actions.unsqueeze(1))
            else:
                Q_targets_next = self.qnetwork_target(next_states).max(1)[0].unsqueeze(1)
            # Compute Q targets for current states
            rewards = self.R_target(states).gather(1, actions)
            Q_targets = rewards + (self.gamma * Q_targets_next * (dones))
            if debug:
                print("reward  {}".format(rewards.item()))
                print("Q target next {}".format(Q_targets_next.item()))
                print("Q_target {}".format(Q_targets.item()))



        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)
        if log:
            text = "Action {:.2f}  q target {:.2f} =  r_a {:.2f} + target {:.2f} and pre{:.2f}".format(actions.item(), Q_targets.item(), rewards.item(), Q_targets_next.item(), Q_expected.item())
            logging.debug(text)
        if debug:
            print("q for a {}".format(Q_expected))
        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        self.writer.add_scalar('Q_loss', loss, self.steps)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        if debug:
            print("q after update {}".format(self.qnetwork_local(states)))
            print("q loss {}".format(loss.item()))


        # ------------------- update target network ------------------- #



    def dqn_train(self, n_episodes=2000, max_t=1000, eps_start=1.0, eps_end=0.01, eps_decay=0.995):
        env =  gym.make('LunarLander-v2')
        scores = []                        # list containing scores from each episode
        scores_window = deque(maxlen=100)  # last 100 scores
        eps = eps_start
        for i_episode in range(1, n_episodes+1):
            state = env.reset()
            score = 0
            for t in range(max_t):
                self.t_step += 1
                action = self.dqn_act(state, eps)
                next_state, reward, done, _ = env.step(action)
                self.step(state, action, reward, next_state, done)
                state = next_state
                score += reward
                if done:
                    self.test_q()
                    break
            scores_window.append(score)       # save most recent score
            scores.append(score)              # save most recent score
            eps = max(eps_end, eps_decay*eps) # decrease epsilon
            print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window)), end="")
            if i_episode % 100 == 0:
                print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window)))
            if np.mean(scores_window)>=200.0:
                print('\nEnvironment solved in {:d} episodes!\tAverage Score: {:.2f}'.format(i_episode-100, np.mean(scores_window)))
                break



    def test_policy(self):
        env =  gym.make('LunarLander-v2')
        logging.debug("new episode")
        average_score = [] 
        average_steps = []
        average_action = []
        for i in range(5):
            state = env.reset()
            score = 0
            same_action = 0
            logging.debug("new episode")
            for t in range(200):
                state = torch.from_numpy(state).float().unsqueeze(0).to(self.device)
                q_expert = self.expert_q(state)
                q_values = self.qnetwork_local(state)
                logging.debug("q expert a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}".format(q_expert.data[0][0], q_expert.data[0][1], q_expert.data[0][2], q_expert.data[0][3]))
                logging.debug("q values a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}  )".format(q_values.data[0][0], q_values.data[0][1], q_values.data[0][2], q_values.data[0][3]))
                action = torch.argmax(q_values).item()
                action_e = torch.argmax(q_expert).item()
                if action == action_e:
                    same_action += 1
                next_state, reward, done, _ = env.step(action)
                state = next_state
                score += reward
                if done:
                    average_score.append(score)
                    average_steps.append(t)
                    average_action.append(same_action)
                    break
        mean_steps = np.mean(average_steps)
        mean_score = np.mean(average_score)
        mean_action= np.mean(average_action)
        self.writer.add_scalar('Ave_epsiode_length', mean_steps , self.steps)
        self.writer.add_scalar('Ave_same_action', mean_action, self.steps)
        self.writer.add_scalar('Ave_score', mean_score, self.steps)


    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % 4
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > self.batch_size:
                experiences = self.memory.sample()
                self.update_q(experiences)


    def dqn_act(self, state, eps=0.):
        """Returns actions for given state as per current policy.

        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def update_q(self, experiences, debug=False):
        """Update value parameters using given batch of experience tuples.
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences
        # Get max predicted Q values (for next states) from target model
        with torch.no_grad():
            Q_targets_next = self.qnetwork_target(next_states).max(1)[0].unsqueeze(1)
            # Compute Q targets for current states
            Q_targets = rewards + (self.gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)
        if debug:
            print("----------------------")
            print("----------------------")
            print("Q target", Q_targets)
            print("pre", Q_expected)
            print("all local",self.qnetwork_local(states))

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target)



    def test_q(self):
        experiences = self.memory.test_sample()
        self.update_q(experiences, True)

    def test_q_value(self, memory):
        same_action = 0
        test_elements = memory.idx
        all_diff = 0
        error = True
        self.predicter.eval()
        for i in range(test_elements):
            # print("lop", i)
            states = memory.obses[i]
            next_states = memory.next_obses[i]
            actions = memory.actions[i]
            dones = memory.not_dones[i]
            states = torch.as_tensor(states, device=self.device).unsqueeze(0)
            next_states = torch.as_tensor(next_states, device=self.device)
            actions = torch.as_tensor(actions, device=self.device)
            dones = torch.as_tensor(dones, device=self.device)
            with torch.no_grad():
                output = self.predicter(states)
                output = F.softmax(output, dim=1)
                q_values = self.qnetwork_local(states)
                expert_values = self.expert_q(states)
                print("q values ", q_values)
                print("ex values  ", expert_values)
                best_action = torch.argmax(q_values).item()
                actions = actions.type(torch.int64)
                q_max = q_values.max(1)
                
                #print("q values", q_values)
                q = q_values[0][actions.item()].item()
                #print("q action", q)
                max_q =  q_max[0].data.item()
                diff = max_q - q
                all_diff += diff
                #print("q best", max_q)
                #print("difference ", diff)
            if  actions.item() != best_action:
                r = self.R_local(states)
                rt = self.R_target(states)
                qt = self.qnetwork_target(states)
                logging.debug("------------------false action --------------------------------")
                logging.debug("expert action  {})".format(actions.item()))
                logging.debug("out predicter a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}  )".format(output.data[0][0], output.data[0][1], output.data[0][2], output.data[0][3]))
                logging.debug("q values a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}  )".format(q_values.data[0][0], q_values.data[0][1], q_values.data[0][2], q_values.data[0][3]))
                logging.debug("q target a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}  )".format(qt.data[0][0], qt.data[0][1], qt.data[0][2], qt.data[0][3]))
                logging.debug("rewards a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}  )".format(r.data[0][0], r.data[0][1], r.data[0][2], r.data[0][3]))
                logging.debug("re target a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}  )".format(rt.data[0][0], rt.data[0][1], rt.data[0][2], rt.data[0][3]))
                """ 
                logging.debug("---------Reward Function------------")
                action = torch.Tensor(1) * 0 +  0
                self.compute_r_function(states, action.unsqueeze(0).to(self.device), log= True)
                action = torch.Tensor(1) * 0 +  1
                self.compute_r_function(states, action.unsqueeze(0).to(self.device), log= True)
                action = torch.Tensor(1) * 0 +  2
                self.compute_r_function(states, action.unsqueeze(0).to(self.device), log= True)
                action = torch.Tensor(1) * 0 +  3
                self.compute_r_function(states, action.unsqueeze(0).to(self.device), log= True)
                logging.debug("------------------Q Function --------------------------------")
                action = torch.Tensor(1) * 0 +  0
                self.compute_q_function(states, next_states.unsqueeze(0), action.unsqueeze(0).to(self.device), dones, log= True)
                action = torch.Tensor(1) * 0 +  1
                self.compute_q_function(states, next_states.unsqueeze(0), action.unsqueeze(0).to(self.device), dones, log= True)
                action = torch.Tensor(1) * 0 +  2
                self.compute_q_function(states, next_states.unsqueeze(0), action.unsqueeze(0).to(self.device), dones, log= True)
                action = torch.Tensor(1) * 0 +  3
                self.compute_q_function(states, next_states.unsqueeze(0), action.unsqueeze(0).to(self.device), dones, log= True)
                """
                

            if  actions.item() == best_action:
                same_action += 1
                continue
                print("-------------------------------------------------------------------------------")
                print("state ", i)
                print("expert ", actions)
                print("q values", q_values.data)
                print("action prob predicter  ", output.data)
                self.compute_r_function(states, actions.unsqueeze(0), True)
                self.compute_q_function(states, next_states.unsqueeze(0), actions.unsqueeze(0), dones, True)
            else:
                if error:
                    continue
                    print("-------------------------------------------------------------------------------")
                    print("expert action ", actions.item())
                    print("best action q ", best_action)
                    print(i)
                    error = False
                continue
                # logging.debug("experte action  {} q fun {}".format(actions.item(), q_values))
                print("-------------------------------------------------------------------------------")
                print("state ", i)
                print("expert ", actions)
                print("q values", q_values.data)
                print("action prob predicter  ", output.data)
                self.compute_r_function(states, actions.unsqueeze(0), True)
                self.compute_q_function(states, next_states.unsqueeze(0), actions.unsqueeze(0), dones, True)


        self.writer.add_scalar('diff', all_diff, self.steps)
        self.average_same_action.append(same_action)
        av_action = np.mean(self.average_same_action)
        self.writer.add_scalar('Same_action', same_action, self.steps)
        print("Same actions {}  of {}".format(same_action, test_elements))
        self.predicter.train()


    def soft_update(self, local_model, target_model, tau=4):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter
        """
        # print("use tau", tau)
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
    
    def save(self, filename):
        """

        """
        mkdir("", filename)
        torch.save(self.predicter.state_dict(), filename + "_predicter.pth")
        torch.save(self.optimizer_pre.state_dict(), filename + "_predicter_optimizer.pth")
        torch.save(self.qnetwork_local.state_dict(), filename + "_q_net.pth")
        """
        torch.save(self.optimizer_q.state_dict(), filename + "_q_net_optimizer.pth")
        torch.save(self.q_shift_local.state_dict(), filename + "_q_shift_net.pth")
        torch.save(self.optimizer_q_shift.state_dict(), filename + "_q_shift_net_optimizer.pth")
        """
        print("save models to {}".format(filename))
    
    def load(self, filename):
        self.predicter.load_state_dict(torch.load(filename + "_predicter.pth"))
        self.optimizer_pre.load_state_dict(torch.load(filename + "_predicter_optimizer.pth"))
        print("Load models to {}".format(filename))
コード例 #18
0
bin1 = 0
bin2 = 0
bin3 = 0
bin4 = 0
tot1 = 0
tot2 = 0
tot3 = 0
tot4 = 0

# model = LSTM_main(config).to(device)
# PATH = bi_path

model = Classifier(config).to(device)
PATH = base_path

model.load_state_dict(torch.load(PATH, map_location=device))
model = model.to(device)
print(model)

for i in range(len(labels)):
    
    s1_embed, s1_len = get_batch_from_idx(s1[i].split(), embeddings, config)
    s2_embed, s2_len = get_batch_from_idx(s2[i].split(), embeddings, config)
    u = torch.sum(s1_embed,0).to(device)
    v = torch.sum(s1_embed,0).to(device)

    
    feats = torch.cat((u, v, torch.abs(u- v), u*v), 0).to(device)
    
    with torch.no_grad():
            out = model.forward(feats).to(device)
コード例 #19
0
def run_training(opt):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    work_dir, epochs, train_batch, valid_batch, weights = \
        opt.work_dir, opt.epochs, opt.train_bs, opt.valid_bs, opt.weights

    # Directories
    last = os.path.join(work_dir, 'last.pt')
    best = os.path.join(work_dir, 'best.pt')

    # --------------------------------------
    # Setup train and validation set
    # --------------------------------------
    data = pd.read_csv(opt.train_csv)
    images_path = opt.data_dir

    n_classes = 6  # fixed coding :V

    data['class'] = data.apply(lambda row: categ[row["class"]], axis=1)

    train_loader, val_loader = prepare_dataloader(data,
                                                  opt.fold,
                                                  train_batch,
                                                  valid_batch,
                                                  opt.img_size,
                                                  opt.num_workers,
                                                  data_root=images_path)

    # if not opt.ovr_val:
    #     handwritten_data = pd.read_csv(opt.handwritten_csv)
    #     printed_data = pd.read_csv(opt.printed_csv)
    #     handwritten_data['class'] = handwritten_data.apply(lambda row: categ[row["class"]], axis =1)
    #     printed_data['class'] = printed_data.apply(lambda row: categ[row["class"]], axis =1)
    #     _, handwritten_val_loader = prepare_dataloader(
    #         handwritten_data, opt.fold, train_batch, valid_batch, opt.img_size, opt.num_workers, data_root=images_path)

    #     _, printed_val_loader = prepare_dataloader(
    #         printed_data, opt.fold, train_batch, valid_batch, opt.img_size, opt.num_workers, data_root=images_path)

    # --------------------------------------
    # Models
    # --------------------------------------

    model = Classifier(model_name=opt.model_name,
                       n_classes=n_classes,
                       pretrained=True).to(device)

    if opt.weights is not None:
        cp = torch.load(opt.weights)
        model.load_state_dict(cp['model'])

    # -------------------------------------------
    # Setup optimizer, scheduler, criterion loss
    # -------------------------------------------

    optimizer = AdamW(model.parameters(), lr=1e-4, weight_decay=1e-6)
    scheduler = CosineAnnealingWarmRestarts(optimizer,
                                            T_0=10,
                                            T_mult=1,
                                            eta_min=1e-6,
                                            last_epoch=-1)
    scaler = GradScaler()

    loss_tr = nn.CrossEntropyLoss().to(device)
    loss_fn = nn.CrossEntropyLoss().to(device)

    # --------------------------------------
    # Setup training
    # --------------------------------------
    if os.path.exists(work_dir) == False:
        os.mkdir(work_dir)

    best_loss = 1e5
    start_epoch = 0
    best_epoch = 0  # for early stopping

    if opt.resume == True:
        checkpoint = torch.load(last)

        start_epoch = checkpoint["epoch"]
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        scheduler.load_state_dict(checkpoint["scheduler"])
        best_loss = checkpoint["best_loss"]

    # --------------------------------------
    # Start training
    # --------------------------------------
    print("[INFO] Start training...")
    for epoch in range(start_epoch, epochs):
        train_one_epoch(epoch,
                        model,
                        loss_tr,
                        optimizer,
                        train_loader,
                        device,
                        scheduler=scheduler,
                        scaler=scaler)
        with torch.no_grad():
            if opt.ovr_val:
                val_loss = valid_one_epoch_overall(epoch,
                                                   model,
                                                   loss_fn,
                                                   val_loader,
                                                   device,
                                                   scheduler=None)
            else:
                val_loss = valid_one_epoch(epoch,
                                           model,
                                           loss_fn,
                                           handwritten_val_loader,
                                           printed_val_loader,
                                           device,
                                           scheduler=None)

            if val_loss < best_loss:
                best_loss = val_loss
                best_epoch = epoch
                torch.save(
                    {
                        'epoch': epoch,
                        'model': model.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'scheduler': scheduler.state_dict(),
                        'best_loss': best_loss
                    }, os.path.join(best))

                print('best model found for epoch {}'.format(epoch + 1))

        torch.save(
            {
                'epoch': epoch,
                'model': model.state_dict(),
                'optimizer': optimizer.state_dict(),
                'scheduler': scheduler.state_dict(),
                'best_loss': best_loss
            }, os.path.join(last))

        if epoch - best_epoch > opt.patience:
            print("Early stop achieved at", epoch + 1)
            break

    del model, optimizer, train_loader, val_loader, scheduler, scaler
    torch.cuda.empty_cache()
コード例 #20
0
def train(seed=0,
          dataset='grid',
          samplers=(UniformDatasetSampler, UniformLatentSampler),
          latent_dim=2,
          model_dim=256,
          device='cuda',
          conditional=False,
          learning_rate=2e-4,
          betas=(0.5, 0.9),
          batch_size=256,
          iterations=400,
          n_critic=5,
          objective='gan',
          gp_lambda=10,
          output_dir='results',
          plot=False,
          spec_norm=True):

    experiment_name = [
        seed, dataset, samplers[0].__name__, samplers[1].__name__, latent_dim,
        model_dim, device, conditional, learning_rate, betas[0], betas[1],
        batch_size, iterations, n_critic, objective, gp_lambda, plot, spec_norm
    ]
    experiment_name = '_'.join([str(p) for p in experiment_name])
    results_dir = os.path.join(output_dir, experiment_name)
    network_dir = os.path.join(results_dir, 'networks')
    eval_log = os.path.join(results_dir, 'eval.log')

    os.makedirs(results_dir, exist_ok=True)
    os.makedirs(network_dir, exist_ok=True)

    eval_file = open(eval_log, 'w')

    if plot:
        samples_dir = os.path.join(results_dir, 'samples')
        os.makedirs(samples_dir, exist_ok=True)

    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

    data, labels = load_data(dataset)
    data_dim, num_classes = data.shape[1], len(set(labels))

    data_sampler = samplers[0](
        torch.tensor(data).float(),
        torch.tensor(labels).long()) if conditional else samplers[0](
            torch.tensor(data).float())
    noise_sampler = samplers[1](
        latent_dim, labels) if conditional else samplers[1](latent_dim)

    if conditional:
        test_data, test_labels = load_data(dataset, split='test')
        test_dataset = TensorDataset(
            torch.tensor(test_data).to(device).float(),
            torch.tensor(test_labels).to(device).long())
        test_dataloader = DataLoader(test_dataset, batch_size=4096)

        G = Generator(latent_dim + num_classes, model_dim,
                      data_dim).to(device).train().train()
        D = Discriminator(model_dim,
                          data_dim + num_classes,
                          spec_norm=spec_norm).to(device).train()

        C_real = Classifier(model_dim, data_dim,
                            num_classes).to(device).train()
        C_fake = Classifier(model_dim, data_dim,
                            num_classes).to(device).train()
        C_fake.load_state_dict(deepcopy(C_real.state_dict()))

        C_real_optimizer = optim.Adam(C_real.parameters(),
                                      lr=2 * learning_rate)
        C_fake_optimizer = optim.Adam(C_fake.parameters(),
                                      lr=2 * learning_rate)
        C_crit = nn.CrossEntropyLoss()
    else:
        G = Generator(latent_dim, model_dim, data_dim).to(device).train()
        D = Discriminator(model_dim, data_dim,
                          spec_norm=spec_norm).to(device).train()

    D_optimizer = optim.Adam(D.parameters(), lr=learning_rate, betas=betas)
    G_optimizer = optim.Adam(G.parameters(), lr=learning_rate, betas=betas)

    if objective == 'gan':
        fake_target = torch.zeros(batch_size, 1).to(device)
        real_target = torch.ones(batch_size, 1).to(device)
    elif objective == 'wgan':
        grad_target = torch.ones(batch_size, 1).to(device)
    elif objective == 'hinge':
        bound = torch.zeros(batch_size, 1).to(device)
        sub = torch.ones(batch_size, 1).to(device)

    stats = {'D': [], 'G': [], 'C_it': [], 'C_real': [], 'C_fake': []}
    if plot:
        fixed_latent_batch = noise_sampler.get_batch(20000)
        sample_figure = plt.figure(num=0, figsize=(5, 5))
        loss_figure = plt.figure(num=1, figsize=(10, 5))
        if conditional:
            accuracy_figure = plt.figure(num=2, figsize=(10, 5))

    for it in range(iterations + 1):
        # Train Discriminator
        data_batch = data_sampler.get_batch(batch_size)
        latent_batch = noise_sampler.get_batch(batch_size)

        if conditional:
            x_real, y_real = data_batch[0].to(device), data_batch[1].to(device)
            real_sample = torch.cat([x_real, y_real], dim=1)

            z_fake, y_fake = latent_batch[0].to(device), latent_batch[1].to(
                device)
            x_fake = G(torch.cat([z_fake, y_fake], dim=1)).detach()
            fake_sample = torch.cat([x_fake, y_fake], dim=1)

        else:
            x_real = data_batch.to(device)
            real_sample = x_real

            z_fake = latent_batch.to(device)
            x_fake = G(z_fake).detach()
            fake_sample = x_fake

        D.zero_grad()
        real_pred = D(real_sample)
        fake_pred = D(fake_sample)

        if is_recorded(data_sampler):
            data_sampler.record(real_pred.detach().cpu().numpy())

        if is_weighted(data_sampler):
            weights = torch.tensor(
                data_sampler.get_weights()).to(device).float().view(
                    real_pred.shape)
        else:
            weights = torch.ones_like(real_pred).to(device)

        if objective == 'gan':
            D_loss = F.binary_cross_entropy(fake_pred, fake_target).mean() + (
                weights *
                F.binary_cross_entropy(real_pred, real_target)).mean()
            stats['D'].append(D_loss.item())

        elif objective == 'wgan':
            alpha = torch.rand(batch_size,
                               1).expand(real_sample.size()).to(device)
            interpolate = (alpha * real_sample +
                           (1 - alpha) * fake_sample).requires_grad_(True)
            gradients = torch.autograd.grad(outputs=D(interpolate),
                                            inputs=interpolate,
                                            grad_outputs=grad_target,
                                            create_graph=True,
                                            retain_graph=True,
                                            only_inputs=True)[0]

            gradient_penalty = (gradients.norm(2, dim=1) -
                                1).pow(2).mean() * gp_lambda

            D_loss = fake_pred.mean() - (real_pred * weights).mean()
            stats['D'].append(-D_loss.item())
            D_loss += gradient_penalty

        elif objective == 'hinge':
            D_loss = -(torch.min(real_pred - sub, bound) *
                       weights).mean() - torch.min(-fake_pred - sub,
                                                   bound).mean()
            stats['D'].append(D_loss.item())

        D_loss.backward()
        D_optimizer.step()

        # Train Generator
        if it % n_critic == 0:
            G.zero_grad()

            latent_batch = noise_sampler.get_batch(batch_size)

            if conditional:
                z_fake, y_fake = latent_batch[0].to(
                    device), latent_batch[1].to(device)
                x_fake = G(torch.cat([z_fake, y_fake], dim=1))
                fake_pred = D(torch.cat([x_fake, y_fake], dim=1))
            else:
                z_fake = latent_batch.to(device)
                x_fake = G(z_fake)
                fake_pred = D(x_fake)

            if objective == 'gan':
                G_loss = F.binary_cross_entropy(fake_pred, real_target).mean()
                stats['G'].extend([G_loss.item()] * n_critic)
            elif objective == 'wgan':
                G_loss = -fake_pred.mean()
                stats['G'].extend([-G_loss.item()] * n_critic)
            elif objective == 'hinge':
                G_loss = -fake_pred.mean()
                stats['G'].extend([-G_loss.item()] * n_critic)

            G_loss.backward()
            G_optimizer.step()

        if conditional:
            # Train fake classifier
            C_fake.train()

            C_fake.zero_grad()
            C_fake_loss = C_crit(C_fake(x_fake.detach()), y_fake.argmax(1))
            C_fake_loss.backward()
            C_fake_optimizer.step()

            # Train real classifier
            C_real.train()

            C_real.zero_grad()
            C_real_loss = C_crit(C_real(x_real), y_real.argmax(1))
            C_real_loss.backward()
            C_real_optimizer.step()

        if it % 5 == 0:
            C_real.eval()
            C_fake.eval()
            real_correct, fake_correct, total = 0.0, 0.0, 0.0
            for idx, (sample, label) in enumerate(test_dataloader):
                real_correct += (
                    C_real(sample).argmax(1).view(-1) == label).sum()
                fake_correct += (
                    C_fake(sample).argmax(1).view(-1) == label).sum()
                total += sample.shape[0]

            stats['C_it'].append(it)
            stats['C_real'].append(real_correct.item() / total)
            stats['C_fake'].append(fake_correct.item() / total)

            line = f"{it}\t{stats['D'][-1]:.3f}\t{stats['G'][-1]:.3f}"
            if conditional:
                line += f"\t{stats['C_real'][-1]*100:.3f}\t{stats['C_fake'][-1]*100:.3f}"

            print(line, eval_file)

            if plot:
                if conditional:
                    z_fake, y_fake = fixed_latent_batch[0].to(
                        device), fixed_latent_batch[1].to(device)
                    x_fake = G(torch.cat([z_fake, y_fake], dim=1))
                else:
                    z_fake = fixed_latent_batch.to(device)
                    x_fake = G(z_fake)

                generated = x_fake.detach().cpu().numpy()

                plt.figure(0)
                plt.clf()
                plt.scatter(generated[:, 0],
                            generated[:, 1],
                            marker='.',
                            color=(0, 1, 0, 0.01))
                plt.axis('equal')
                plt.xlim(-1, 1)
                plt.ylim(-1, 1)
                plt.savefig(os.path.join(samples_dir, f'{it}.png'))

                plt.figure(1)
                plt.clf()
                plt.plot(stats['G'], label='Generator')
                plt.plot(stats['D'], label='Discriminator')
                plt.legend()
                plt.savefig(os.path.join(results_dir, 'loss.png'))

                if conditional:
                    plt.figure(2)
                    plt.clf()
                    plt.plot(stats['C_it'], stats['C_real'], label='Real')
                    plt.plot(stats['C_it'], stats['C_fake'], label='Fake')
                    plt.legend()
                    plt.savefig(os.path.join(results_dir, 'accuracy.png'))

    save_model(G, os.path.join(network_dir, 'G_trained.pth'))
    save_model(D, os.path.join(network_dir, 'D_trained.pth'))
    save_stats(stats, os.path.join(results_dir, 'stats.pth'))
    if conditional:
        save_model(C_real, os.path.join(network_dir, 'C_real_trained.pth'))
        save_model(C_fake, os.path.join(network_dir, 'C_fake_trained.pth'))
    eval_file.close()