def check_dc_generator(): """Checks the output and number of parameters of the DCGenerator class. """ state = torch.load('checker_files/dc_generator.pt') G = DCGenerator(noise_size=100, conv_dim=32) G.load_state_dict(state['state_dict']) noise = state['input'] dc_generator_expected = state['output'] output = G(noise) output_np = output.data.cpu().numpy() if np.allclose(output_np, dc_generator_expected): print('DCGenerator output: EQUAL') else: print('DCGenerator output: NOT EQUAL') num_params = count_parameters(G) expected_params = 370624 print('DCGenerator #params = {}, expected #params = {}, {}'.format( num_params, expected_params, 'EQUAL' if num_params == expected_params else 'NOT EQUAL')) print('-' * 80)
def check_dc_generator(): """Checks the output and number of parameters of the DCGenerator class. """ state = torch.load('/home/love_you/Documents/Study/deep_learning/a4-code/a4-code-v2-updated/checker_files/dc_generator.pt') # print(state['state_dict'].keys()) G = DCGenerator(noise_size=100, conv_dim=32) # for name, param in G.named_parameters(): # print(name) # summary(G, input_size=(100, 1, 1)) G.load_state_dict(state['state_dict']) noise = state['input'] dc_generator_expected = state['output'] output = G(noise) output_np = output.data.cpu().numpy() if np.allclose(output_np, dc_generator_expected): print('DCGenerator output: EQUAL') else: print('DCGenerator output: NOT EQUAL') num_params = count_parameters(G) expected_params = 370624 print('DCGenerator #params = {}, expected #params = {}, {}'.format( num_params, expected_params, 'EQUAL' if num_params == expected_params else 'NOT EQUAL')) print('-' * 80)