コード例 #1
0
def vote():
    annotator = utils.get_current_annotator()
    if annotator is not None:
        if annotator.prev.id == int(
                request.form['prev_id']) and annotator.next.id == int(
                    request.form['next_id']):
            if request.form['action'] == 'Skip':
                annotator.ignore.append(annotator.next)
            else:
                if request.form['action'] == 'Previous':
                    utils.perform_vote(annotator, next_won=False)
                    decision = Decision(annotator,
                                        winner=annotator.prev,
                                        loser=annotator.next)
                elif request.form['action'] == 'Current':
                    utils.perform_vote(annotator, next_won=True)
                    decision = Decision(annotator,
                                        winner=annotator.next,
                                        loser=annotator.prev)
                db.session.add(decision)
                annotator.next.viewed.append(annotator)
                annotator.prev = annotator.next
                annotator.ignore.append(annotator.prev)
            annotator.next = utils.choose_next(annotator)
            db.session.commit()
    return redirect(url_for('index'))
コード例 #2
0
ファイル: views.py プロジェクト: samastur/openconsent
def create_decision(request, status, template_name):    
    decision = Decision(status=status)
    decision.author = request.user
    if request.method == "POST":
        return _process_post_and_redirect(request, decision, template_name)

    form = DecisionForm(instance=decision)    
    data = dict(form=form,tab=status)
    context = RequestContext(request, data)
    return render_to_response(template_name, context)
コード例 #3
0
def main():
    args = get_arguments()
    print(args)

    MODEL_DIR = os.path.join(ROOT_DIR, "logs/decision")
    data_dir = "./data/"

    config = CityscapeConfig()
    config.FLOW = args.flowmodel
    decision = Decision(config, dropout=0.5)
    decision.train(data_dir, MODEL_DIR, epochs=200)
コード例 #4
0
ファイル: views.py プロジェクト: naomir/openconsent
def modify_decision(request, decision_id = None, status_id = None):
    if decision_id is None:
        decision = Decision()
        if status_id is not None:
            decision.status = int(status_id)
    else:
        decision = get_object_or_404(Decision, id = decision_id)
    
    if request.method == "POST":
        if request.POST.get('submit', None) == "Cancel":
            return_page = unicode(decision.status_text())            
            return HttpResponseRedirect(reverse(listing, args=[return_page]))
        
        else:
            decision_form = DecisionForm(data=request.POST, 
                                         instance=decision)
            feedback_formset = FeedbackFormSet(data=request.POST, 
                                               instance=decision)

            if decision_form.is_valid():
                decision = decision_form.save(commit=False)
                feedback_formset = FeedbackFormSet(request.POST, 
                                                   instance=decision)
                if feedback_formset.is_valid():
                    decision.save(request.user)
                    if decision_form.cleaned_data['watch']:
                        decision.add_watcher(request.user)
                    else:
                        decision.remove_watcher(request.user)
                    feedback_formset.save()
                    
                    return_page = unicode(decision.status_text())
                    return HttpResponseRedirect(reverse(listing, args=[return_page]))

    else:
        feedback_formset = FeedbackFormSet(instance=decision)
        decision_form = DecisionForm(instance=decision)
        
    return render_to_response('decision_edit.html',
        RequestContext(request,
            dict(decision_form=decision_form, feedback_formset=feedback_formset)))
コード例 #5
0
ファイル: demo_repository.py プロジェクト: zukobronja/vote
    def _get_test_contest_decisions(contest):
        random.seed()
        decisions = []
        ballot_ids = [str(uuid.uuid4()) for x in range(7)]
        num_decisions = random.randint(90, 200)
        for i in range(num_decisions):

            voter_opinions = {}
            write_in_names = []

            if contest.decision_type == contest.DECISION_TYPE_VOTE_YES_NO:
                voter_opinions[0] = random.randint(0, 1)
            else:
                if contest.allow_write_ins and (random.randint(1, 10000) %
                                                25) == 0:
                    # # enter a write in
                    write_in_names.append("Write In {0}".format(
                        random.randint(1, 4)))
                    voter_opinions[len(contest.contestants)] = 1
                else:
                    # #pick a candidate ar random
                    voter_opinions[random.randint(0,
                                                  len(contest.contestants) -
                                                  1)] = 1

            decision = Decision(
                contest, {
                    'decision_id': str(uuid.uuid4()),
                    'contest_id': contest.id,
                    'ballot_id': ballot_ids[random.randint(1, 10000) % 7],
                    'timestamp': datetime.now(),
                    'contest': contest,
                    'authoritative': True,
                    'latest': True,
                    'voter_id': str(uuid.uuid4()),
                    'voter_opinions': voter_opinions,
                    'write_in_names': write_in_names
                })

            decisions.append(decision)

        return decisions
コード例 #6
0
ファイル: evaluation.py プロジェクト: XUSean0118/Mask_RCNN
    config.BACKBONE = args.resnetmodel
    config.IMAGE_SHAPE = [1024, 1024, 6]
    config.POST_NMS_ROIS_INFERENCE = 500
    #config.display()

    # Validation dataset
    dataset = CityscapeDataset()
    dataset.load_cityscape(args.data_dir, "val", args.num_frames, args.fix)
    dataset.prepare()
    print("Image Count: {}".format(len(dataset.image_ids)))
    
    resnet = ResNet(config=config)
    flownet = FlowNet(config=config)
    maskrcnn = MaskRCNN(config=config)
    warp = Warp(config=config)
    decision = Decision(config=config)

    model_path = args.restore_from
    resnet.load_weights(model_path, by_name=True)
    flownet.load_weights(model_path, by_name=True)
    maskrcnn.load_weights(model_path, by_name=True)
    decision.load_weights(args.decision_from, by_name=True)

    AP50s = []
    APs = []
    seg_step = 0
    flow_step = 0
    score = 0
    if args.method == 2:
        target = -args.target
    else:
コード例 #7
0
ファイル: inference.py プロジェクト: XUSean0118/Mask_RCNN
def main():
    args = get_arguments()
    print(args)

    config = CityscapeConfig()
    config.FLOW = args.flowmodel
    config.BACKBONE = args.resnetmodel
    config.IMAGE_SHAPE = [1024, 1024, 6]
    config.POST_NMS_ROIS_INFERENCE = 500
    #config.display()

    resnet = ResNet(config=config)
    flownet = FlowNet(config=config)
    maskrcnn = MaskRCNN(config=config)
    warp = Warp(config=config)
    decision = Decision(config=config)

    model_path = args.restore_from
    resnet.load_weights(model_path, by_name=True)
    flownet.load_weights(model_path, by_name=True)
    maskrcnn.load_weights(model_path, by_name=True)
    decision.load_weights(args.decision_from, by_name=True)

    seg_step = 0
    flow_step = 0
    target = args.target
    list_file = open(args.data_list, 'r')
    if args.is_save and not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    for step in range(args.num_steps):
        f1 = list_file.readline().split('\n')[0]
        f1 = os.path.join(args.data_dir, f1)
        current = np.expand_dims(skimage.io.imread(f1), 0)
        current, image_metas, window = mold_inputs(config, current)
        image = current[0] + config.MEAN_PIXEL
        if step == 0:
            seg_step += 1
            key_P2, key_P3, key_P4, key_P5, key_P6 = resnet.keras_model.predict(
                current)
            key = current
            P2, P3, P4, P5, P6 = key_P2, key_P3, key_P4, key_P5, key_P6
        else:
            images = np.concatenate([current, key], 3)
            flow, flow_feature = flownet.keras_model.predict(images)
            score = decision.keras_model.predict(flow_feature)[0][0]
            print("step: {:4d} predict score: {:.3f} target: {:.2f}".format(
                step, score, target))

            if score < target:
                if args.dynamic and target < 50:
                    target -= 0.5
                seg_step += 1
                key_P2, key_P3, key_P4, key_P5, key_P6 = resnet.keras_model.predict(
                    current)
                key = current
                P2, P3, P4, P5, P6 = key_P2, key_P3, key_P4, key_P5, key_P6
            else:
                if args.dynamic and target < 95:
                    target += 0.25
                flow_step += 1
                P2, P3, P4, P5, P6 = warp.predict(
                    [key_P2, key_P3, key_P4, key_P5, key_P6, flow])

        inputs = [image_metas, P2, P3, P4, P5, P6]
        result = maskrcnn.detect_molded(inputs)

        # Save
        if args.is_save:
            save_name = args.save_dir + 'mask' + str(step) + '.png'
            colors = np.array(label_colors) / 255.0
            pred_img = visualize.display_instances(image,
                                                   result['rois'],
                                                   result['masks'],
                                                   result['class_ids'],
                                                   class_names,
                                                   result['scores'],
                                                   colors=colors,
                                                   save_name=save_name)
    print("segmentation steps:", seg_step, "flow steps:", flow_step)
コード例 #8
0
 def get_decision(self):
     return Decision(datetime.utcnow(), self.__decision, self.name)
コード例 #9
0
ファイル: views.py プロジェクト: naomir/openconsent
def modify_decision(request, decision_id=None, status_id=None):
    if decision_id is None:
        decision = Decision()
        if status_id is not None:
            decision.status = int(status_id)
    else:
        decision = get_object_or_404(Decision, id=decision_id)

    if request.method == "POST":
        if request.POST.get('submit', None) == "Cancel":
            return_page = unicode(decision.status_text())
            return HttpResponseRedirect(reverse(listing, args=[return_page]))

        else:
            decision_form = DecisionForm(data=request.POST, instance=decision)
            feedback_formset = FeedbackFormSet(data=request.POST,
                                               instance=decision)

            if decision_form.is_valid():
                decision = decision_form.save(commit=False)
                feedback_formset = FeedbackFormSet(request.POST,
                                                   instance=decision)
                if feedback_formset.is_valid():
                    decision.save(request.user)
                    if decision_form.cleaned_data['watch']:
                        decision.add_watcher(request.user)
                    else:
                        decision.remove_watcher(request.user)
                    feedback_formset.save()

                    return_page = unicode(decision.status_text())
                    return HttpResponseRedirect(
                        reverse(listing, args=[return_page]))

    else:
        feedback_formset = FeedbackFormSet(instance=decision)
        decision_form = DecisionForm(instance=decision)

    return render_to_response(
        'decision_edit.html',
        RequestContext(
            request,
            dict(decision_form=decision_form,
                 feedback_formset=feedback_formset)))
コード例 #10
0
ファイル: demo_repository.py プロジェクト: zukobronja/vote
 def _get_real_contest_decisions(contest):
     decisions = []
     results = api.ballot_get_decisions_by_contest(contest.id)
     if results:
         decisions = [Decision(contest, d) for d in results]
     return decisions