def train(): model_id = int(request.form["model_id"]) model = db.session.query(EmbeddingModel).get( model_id) # type: EmbeddingModel if model is None: raise ValueError("No embedding model found by id {0}".format(model_id)) separator = request.form["separator"] text_column = int(request.form["text_column"]) tag_column = int(request.form["tag_column"]) positive_tag = request.form["positive_tag"] negative_tag = request.form["negative_tag"] uploaded_files = [] for filename, file_stream in request.files.items(): file = File() file.separator = separator file.text_column = text_column file.tag_column = tag_column file.positive_tag = positive_tag file.negative_tag = negative_tag uploaded_files.append(file_logic.save(file, file_stream)) extend_vocabulary = True if request.form[ "extend_vocabulary"] == "true" else False model = emb_model_logic.init_training(model_id, [file.id for file in uploaded_files], extend_vocabulary) return jsonify(model.to_dict())
def train(): net_id = int(request.form["net_id"]) net = net_logic.get(net_id) # type: Net separator = request.form["separator"] text_column = int(request.form["text_column"]) tag_column = int(request.form["tag_column"]) positive_tag = request.form["positive_tag"] negative_tag = request.form["negative_tag"] uploaded_files = [] for filename, file_stream in request.files.items(): file = File() file.separator = separator file.text_column = text_column file.tag_column = tag_column file.positive_tag = positive_tag file.negative_tag = negative_tag uploaded_files.append(file_logic.save(file, file_stream)) extend_vocabulary = True if request.form[ "extend_vocabulary"] == "true" else False net = net_logic.init_training(net.id, [file.id for file in uploaded_files], extend_vocabulary) net_info = net.to_dict(_hide=[]) return jsonify(net_info)
def add_files(text_set_id): text_set_id = int(text_set_id) text_set = text_set_logic.get(text_set_id) uploaded_files = [] for filename, file_stream in request.files.items(): fileindex = re.search("file\\[(?P<index>\d+)\\]", filename).group('index') text_column = request.form.get("text_column[{}]".format(fileindex), '') text_column = int(text_column) if text_column else 1 separator = request.form.get("separator[{}]".format(fileindex), '') separator = separator if separator else ',' file = File() file.separator = separator file.text_column = text_column uploaded_files.append(file_logic.save(file, file_stream)) text_set_logic.add_files_to_text_set(text_set_id, [file.id for file in uploaded_files]) return jsonify(text_set.to_dict(_hide=[]))
def extend(): vocabulary_id = request.form["vocabulary_id"] separator = request.form["file"]["separator"] text_column = request.form["file"]["text_column"] tag_column = request.form["file"]["tag_column"] positive_tag = request.form["file"]["positive_tag"] negative_tag = request.form["file"]["negative_tag"] uploaded_files = [] for filename, file_stream in request.files.items(): file = File() file.separator = separator file.text_column = text_column file.tag_column = tag_column file.positive_tag = positive_tag file.negative_tag = negative_tag uploaded_files.append(file_logic.save(file, file_stream)) vocabulary = vocabulary_logic.init_extending( vocabulary_id, [file.id for file in uploaded_files]) return jsonify(vocabulary.to_dict())