コード例 #1
0
def main():

    use_cuda = torch.cuda.is_available() and not args.no_cuda
    device = torch.device('cuda' if use_cuda else 'cpu')
    print(device)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if use_cuda:
        torch.cuda.manual_seed(args.seed)
        torch.backends.cudnn.deterministic = True

    rgb = False
    if args.mode == 'rgb':
        rgb = True

    if args.gray_scale:
        rgb = False

    if args.tracking_data_mod is True:
        args.input_size = 192

    # DATALOADER

    train_dataset = GesturesDataset(model=args.model, csv_path='csv_dataset', train=True, mode=args.mode, rgb=rgb,
                                    normalization_type=1,
                                    n_frames=args.n_frames, resize_dim=args.input_size,
                                    transform_train=args.train_transforms, tracking_data_mod=args.tracking_data_mod)
    train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.n_workers)

    validation_dataset = GesturesDataset(model=args.model, csv_path='csv_dataset', train=False, mode=args.mode, rgb=rgb, normalization_type=1,
                                   n_frames=args.n_frames, resize_dim=args.input_size, tracking_data_mod=args.tracking_data_mod)
    validation_loader = DataLoader(validation_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.n_workers)

    # paramteri per la rete

    in_channels = args.n_frames if not rgb else args.n_frames * 3
    n_classes = args.n_classes

    if args.model == 'LeNet':
        model = LeNet(input_channels=in_channels, input_size=args.input_size, n_classes=n_classes).to(device)

    elif args.model == 'AlexNet':
        model = AlexNet(input_channels=in_channels, input_size=args.input_size, n_classes=n_classes).to(device)

    elif args.model == 'AlexNetBN':
        model = AlexNetBN(input_channels=in_channels, input_size=args.input_size, n_classes=n_classes).to(device)

    elif args.model == "Vgg16":
        model = Vgg16(input_channels=in_channels, input_size=args.input_size, n_classes=n_classes).to(device)

    elif args.model == "Vgg16P":
        model = models.vgg16(pretrained=args.pretrained)
        for params in model.parameters():
            params.requires_grad = False
        model.features._modules['0'] = nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=(3, 3), stride=1, padding=1)
        model.classifier._modules['6'] = nn.Linear(4096, n_classes)
        # model.fc = torch.nn.Linear(model.fc.in_features, n_classes)
        model = model.to(device)

    elif args.model == "ResNet18P":
        model = models.resnet18(pretrained=args.pretrained)
        for params in model.parameters():
            params.requires_grad = False
        model._modules['conv1'] = nn.Conv2d(in_channels, 64, 7, stride=2, padding=3)
        model.fc = torch.nn.Linear(model.fc.in_features, n_classes)
        model = model.to(device)

    elif args.model == "ResNet34P":
        model = models.resnet34(pretrained=args.pretrained)
        for params in model.parameters():
            params.requires_grad = False
        model._modules['conv1'] = nn.Conv2d(in_channels, 64, 7, stride=2, padding=3)
        model.fc = torch.nn.Linear(model.fc.in_features, n_classes)
        model = model.to(device)

    elif args.model == "DenseNet121P":
        model = models.densenet121(pretrained=args.pretrained)
        for params in model.parameters():
            params.requires_grad = False
        model.features._modules['conv0'] = nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=(7, 7),
                                                     stride=(2, 2), padding=(3, 3))
        model.classifier = nn.Linear(in_features=1024, out_features=n_classes, bias=True)
        model = model.to(device)

    elif args.model == "DenseNet161P":
        model = models.densenet161(pretrained=args.pretrained)
        # for params in model.parameters():
        #     params.requires_grad = False
        model.features._modules['conv0'] = nn.Conv2d(in_channels=in_channels, out_channels=96, kernel_size=(7, 7),
                                                     stride=(2, 2), padding=(3, 3))
        model.classifier = nn.Linear(in_features=2208, out_features=n_classes, bias=True)
        model = model.to(device)

    elif args.model == "DenseNet169P":
        model = models.densenet169(pretrained=args.pretrained)
        for params in model.parameters():
            params.requires_grad = False
        model.features._modules['conv0'] = nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=(7, 7),
                                                     stride=(2, 2), padding=(3, 3))
        model.classifier = nn.Linear(in_features=1664, out_features=n_classes, bias=True)
        model = model.to(device)

    elif args.model == "DenseNet201P":
        model = models.densenet201(pretrained=args.pretrained)
        for params in model.parameters():
            params.requires_grad = False
        model.features._modules['conv0'] = nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=(7, 7),
                                                     stride=(2, 2), padding=(3, 3))
        model.classifier = nn.Linear(in_features=1920, out_features=n_classes, bias=True)
        model = model.to(device)
    # RNN
    elif args.model == 'LSTM' or args.model == 'GRU':
        model = Rnn(rnn_type=args.model, input_size=args.input_size, hidden_size=args.hidden_size,
                    batch_size=args.batch_size,
                    num_classes=args.n_classes, num_layers=args.n_layers,
                    final_layer=args.final_layer).to(device)
    # C3D

    elif args.model == 'C3D':
        if args.pretrained:
            model = C3D(rgb=rgb, num_classes=args.n_classes)


            # modifico parametri
            print('ok')

            model.load_state_dict(torch.load('c3d_weights/c3d.pickle', map_location=device), strict=False)
            # # for params in model.parameters():
            #     # params.requires_grad = False

            model.conv1 = nn.Conv3d(1 if not rgb else 3, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1))
            # tolgo fc6 perchè 30 frames
            model.fc6 = nn.Linear(16384, 4096)  # num classes 28672 (112*200)
            model.fc7 = nn.Linear(4096, 4096)  # num classes
            model.fc8 = nn.Linear(4096, n_classes)  # num classes

            model = model.to(device)


    # Conv-lstm
    elif args.model == 'Conv-lstm':
        model = ConvLSTM(input_size=(args.input_size, args.input_size),
                         input_dim=1 if not rgb else 3,
                         hidden_dim=[64, 64, 128],
                         kernel_size=(3, 3),
                         num_layers=args.n_layers,
                         batch_first=True,
                         ).to(device)
    elif args.model == 'DeepConvLstm':
        model = DeepConvLstm(input_channels_conv=1 if not rgb else 3, input_size_conv=args.input_size, n_classes=12,
                             n_frames=args.n_frames, batch_size=args.batch_size).to(device)

    elif args.model == 'ConvGRU':
        model = ConvGRU(input_size=40, hidden_sizes=[64, 128],
                        kernel_sizes=[3, 3], n_layers=2).to(device)

    else:
        raise NotImplementedError

    if args.opt == 'SGD':
        optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
        # optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=args.momentum)

    elif args.opt == 'Adam':
        optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    loss_function = nn.CrossEntropyLoss().to(device)

    start_epoch = 0
    if args.resume:
        checkpoint = torch.load("/projects/fabio/weights/gesture_recog_weights/checkpoint{}.pth.tar".format(args.model))
        model.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        start_epoch = checkpoint['epoch']

        print("Resuming state:\n-epoch: {}\n{}".format(start_epoch, model))

    #name experiment
    personal_name = "{}_{}_{}".format(args.model, args.mode, args.exp_name)
    info_experiment = "{}".format(personal_name)
    log_dir = "/projects/fabio/logs/gesture_recog_logs/exps"
    weight_dir = personal_name
    log_file = open("{}/{}.txt".format("/projects/fabio/logs/gesture_recog_logs/txt_logs", personal_name), 'w')
    log_file.write(personal_name + "\n\n")
    if personal_name:
        exp_name = (("exp_{}_{}".format(time.strftime("%c"), personal_name)).replace(" ", "_")).replace(":", "-")
    else:
        exp_name = (("exp_{}".format(time.strftime("%c"), personal_name)).replace(" ", "_")).replace(":", "-")
    writer = SummaryWriter("{}".format(os.path.join(log_dir, exp_name)))

    # add info experiment
    writer.add_text('Info experiment',
                    "model:{}"
                    "\n\npretrained:{}"
                    "\n\nbatch_size:{}"
                    "\n\nepochs:{}"
                    "\n\noptimizer:{}"
                    "\n\nlr:{}"
                    "\n\ndn_lr:{}"
                    "\n\nmomentum:{}"
                    "\n\nweight_decay:{}"
                    "\n\nn_frames:{}"
                    "\n\ninput_size:{}"
                    "\n\nhidden_size:{}"
                    "\n\ntracking_data_mode:{}"
                    "\n\nn_classes:{}"
                    "\n\nmode:{}"
                    "\n\nn_workers:{}"
                    "\n\nseed:{}"
                    "\n\ninfo:{}"
                    "".format(args.model, args.pretrained, args.batch_size, args.epochs, args.opt, args.lr, args.dn_lr, args.momentum,
                              args.weight_decay, args.n_frames, args.input_size, args.hidden_size, args.tracking_data_mod,
                              args.n_classes, args.mode, args.n_workers, args.seed, info_experiment))

    trainer = Trainer(model=model, loss_function=loss_function, optimizer=optimizer, train_loader=train_loader,
                      validation_loader=validation_loader,
                      batch_size=args.batch_size, initial_lr=args.lr,  device=device, writer=writer, personal_name=personal_name, log_file=log_file,
                      weight_dir=weight_dir, dynamic_lr=args.dn_lr)


    print("experiment: {}".format(personal_name))
    start = time.time()
    for ep in range(start_epoch, args.epochs):
        trainer.train(ep)
        trainer.val(ep)

    # display classes results
    classes = ['g0', 'g1', 'g2', 'g3', 'g4', 'g5', 'g6', 'g7', 'g8', 'g9', 'g10', 'g11']
    for i in range(args.n_classes):
        print('Accuracy of {} : {:.3f}%%'.format(
            classes[i], 100 * trainer.class_correct[i] / trainer.class_total[i]))

    end = time.time()
    h, rem = divmod(end - start, 3600)
    m, s, = divmod(rem, 60)
    print("\nelapsed time (ep.{}):{:0>2}:{:0>2}:{:05.2f}".format(args.epochs, int(h), int(m), s))


    # writing accuracy on file

    log_file.write("\n\n")
    for i in range(args.n_classes):
        log_file.write('Accuracy of {} : {:.3f}%\n'.format(
            classes[i], 100 * trainer.class_correct[i] / trainer.class_total[i]))
    log_file.close()
コード例 #2
0
test_loader = torch.utils.data.DataLoader(testset,
                                          batch_size=batch_size,
                                          shuffle=False,
                                          num_workers=4,
                                          pin_memory=True)

net = LeNet()
criterion = nn.CrossEntropyLoss()

if use_cuda:
    print('start move to cuda')
    torch.cuda.manual_seed_all(seed)
    cudnn.benchmark = True

    device = torch.device("cuda:0")
    net.to(device=device)
    criterion.to(device=device, dtype=dtype)

optimizer = optim.Adam(
    net.parameters(),
    lr=0.001,
)


def train(epoch):
    # global monitor
    print('\nEpoch: %d' % epoch)
    net.train()
    train_loss = 0
    correct = 0
    a = time.time()
コード例 #3
0
def main():
    opt = Parser(train=False).get()

    # dataset and data loader
    _, val_loader, adv_val_loader, _, num_classes = \
            load_dataset(opt.dataset, opt.batch_size, opt.data_root,
                         False, 0.0, opt.num_val_samples,
                         workers=4)

    # model
    if opt.arch == 'lenet':
        model = LeNet(num_classes)
    elif opt.arch == 'resnet':
        model = ResNetv2_20(num_classes)
    else:
        raise NotImplementedError

    # move model to device
    model.to(opt.device)

    # load trained weight
    try:
        model.load_state_dict(torch.load(opt.weight_path))
    except:
        model_weight = convert_model_from_parallel(opt.weight_path)
        model.load_state_dict(model_weight)

    # criterion
    criterion = nn.CrossEntropyLoss()

    # advertorch attacker
    if opt.attack == 'pgd':
        attacker = PGDAttack(model,
                             loss_fn=criterion,
                             eps=opt.eps / 255,
                             nb_iter=opt.num_steps,
                             eps_iter=opt.eps_iter / 255,
                             rand_init=True,
                             clip_min=opt.clip_min,
                             clip_max=opt.clip_max,
                             ord=np.inf,
                             targeted=False)
    else:
        raise NotImplementedError

    # trainer
    trainer = Trainer(opt, model, criterion, attacker)
    trainer.print_freq = -1

    # validation
    val_losses, val_acc1s, val_acc5s = \
        trainer.validate(val_loader)
    aval_losses, aval_acc1s, aval_acc5s = \
        trainer.adv_validate(adv_val_loader)

    print('[model] {}'.format(opt.weight_path))
    print('[standard]\n'
          'loss: {:.4f} | acc1: {:.2f}% | acc5: {:.2f}%'
          '\n[adversarial]\n'
          'loss: {:.4f} | acc1: {:.2f}% | acc5: {:.2f}%'.format(
              val_losses['val'].avg, val_acc1s['val'].avg,
              val_acc5s['val'].avg, aval_losses['aval'].avg,
              aval_acc1s['aval'].avg, aval_acc5s['aval'].avg))
コード例 #4
0
def main():
    opt = Parser().get()

    experiment = None
    if opt.comet:
        experiment = Experiment()
        experiment.set_name(opt.exp_name)
        experiment.log_parameters(opt.__dict__)
        experiment.add_tags(opt.add_tags)

    # dataset and data loader
    train_loader, val_loader, adv_val_loader, _, num_classes = \
            load_dataset(opt.dataset, opt.batch_size, opt.data_root,
                         opt.noise, opt.noise_std, opt.num_val_samples,
                         workers=4)

    # model
    if opt.arch == 'lenet':
        model = LeNet(num_classes)
    elif opt.arch == 'resnet':
        model = ResNetv2_20(num_classes)
    else:
        raise NotImplementedError

    # weight init
    if opt.weight_init == 'he':
        model.apply(init_he)

    # move model to device
    model.to(opt.device)
    if opt.gpu_ids:
        model = nn.DataParallel(model, device_ids=opt.gpu_ids)

    # criterion
    criterion = nn.CrossEntropyLoss()

    # advertorch attacker
    if opt.attack == 'pgd':
        attacker = LinfPGDAttack(model,
                                 loss_fn=criterion,
                                 eps=opt.eps / 255,
                                 nb_iter=opt.num_steps,
                                 eps_iter=opt.eps_iter / 255,
                                 rand_init=True,
                                 clip_min=opt.clip_min,
                                 clip_max=opt.clip_max,
                                 targeted=False)
    else:
        raise NotImplementedError

    # optimizer
    if opt.optim == 'Adam':
        optimizer = optim.Adam(model.parameters(),
                               opt.lr,
                               eps=1e-6,
                               weight_decay=opt.wd)
    elif opt.optim == 'SGD':
        optimizer = optim.SGD(model.parameters(), opt.lr, weight_decay=opt.wd)
    else:
        raise NotImplementedError

    # scheduler
    if opt.scheduler_step:
        scheduler = optim.lr_scheduler.StepLR(optimizer,
                                              step_size=opt.scheduler_step,
                                              gamma=opt.scheduler_gamma)
    else:
        scheduler = None

    # timer
    timer = Timer(opt.num_epochs, 0)

    # trainer
    trainer = Trainer(opt, model, criterion, attacker, optimizer)

    # epoch iteration
    for epoch in range(1, opt.num_epochs + 1):
        trainer.epoch = epoch
        if scheduler:
            scheduler.step(epoch - 1)  # scheduler's epoch is 0-indexed.

        # training
        train_losses, train_acc1s, train_acc5s = \
                trainer.train(train_loader)

        # validation
        val_losses, val_acc1s, val_acc5s = \
                trainer.validate(val_loader)
        if opt.adv_val_freq != -1 and epoch % opt.adv_val_freq == 0:
            aval_losses, aval_acc1s, aval_acc5s = \
                trainer.adv_validate(adv_val_loader)
        else:
            aval_losses, aval_acc1s, aval_acc5s = \
                    dict(), dict(), dict()

        losses = dict(**train_losses, **val_losses, **aval_losses)
        acc1s = dict(**train_acc1s, **val_acc1s, **aval_acc1s)
        acc5s = dict(**train_acc5s, **val_acc5s, **aval_acc5s)
        report_epoch_status(losses, acc1s, acc5s, trainer.num_loss, epoch, opt,
                            timer, experiment)

    save_path = os.path.join('ckpt', opt.dataset, 'models',
                             opt.exp_name + '.pth')
    trainer.save_model(save_path)
コード例 #5
0
loader_train = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=param['batch_size'],
                                           shuffle=True)
test_dataset = datasets.MNIST(root='../data/',
                              train=False,
                              download=True,
                              transform=transforms.ToTensor())
loader_test = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=param['test_batch_size'],
                                          shuffle=True)

model = LeNet()
model.load_state_dict(
    torch.load('models/lenet_pretrained.pkl', map_location='cpu'))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
print("--- Accuracy of Pretrained Model ---")
test(model, loader_test)

# pruning
masks = lenet_prune()
model.set_masks(masks)
print("--- Accuracy After Pruning ---")
test(model, loader_test)

# Retraining
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.RMSprop(model.parameters(),
                                lr=param['learning_rate'],
                                weight_decay=param['weight_decay'])
train(model, criterion, optimizer, param, loader_train)
コード例 #6
0
        batch_size=128)

    v = np.random.randn(1, 32, 32)
    v = v / np.linalg.norm(v)
    trainloader, testloader, trainset, testset = generate_synthetic_data(
        v,
        num_train=10000,
        num_test=10000,
        sigma=3,
        epsilon=1,
        shape=[1, 32, 32],
        batch_size=128)

    # net = LogReg(input_dim=32 * 32, num_classes=2)
    # net = VGG11_bn(num_channels=1, num_classes=2)
    # net = ResNet18(num_channels=1, num_classes=2)
    # net = DenseNet121(num_channels=1, num_classes=2)

    net = LeNet(num_channels=1, num_classes=2)
    net = net.to(DEVICE)

    trained_model = train(model=net,
                          trans=TransformLayer(
                              mean=torch.tensor(0., device=DEVICE),
                              std=torch.tensor(1., device=DEVICE)),
                          trainloader=trainloader,
                          testloader=testloader,
                          epochs=20,
                          max_lr=0.5,
                          momentum=0,
                          weight_decay=0)