コード例 #1
0
    def __setup_loss(self, loss):
        if isinstance(loss, str):
            loss = loss.lower()  # lowercase the string

            if loss == "standard-gan":
                loss = Losses.StandardGAN(self.dis)
            elif loss == "hinge":
                loss = Losses.HingeGAN(self.dis)
            elif loss == "relativistic-hinge":
                loss = Losses.RelativisticAverageHingeGAN(self.dis)
            else:
                raise ValueError("Unknown loss function requested")

        elif not isinstance(loss, Losses.GANLoss):
            raise ValueError("loss is neither an instance of GANLoss nor a string")

        return loss
コード例 #2
0
ファイル: GAN.py プロジェクト: huangzh13/StyleGAN.pytorch
    def __setup_loss(self, loss):
        if isinstance(loss, str):
            loss = loss.lower()  # lowercase the string
            
            if not self.conditional:
                assert loss in ["logistic", "hinge", "standard-gan",
                                "relativistic-hinge"], "Unknown loss function"
                if loss == "logistic":
                    loss_func = Losses.LogisticGAN(self.dis)
                elif loss == "hinge":
                    loss_func = Losses.HingeGAN(self.dis)
                if loss == "standard-gan":
                    loss_func = Losses.StandardGAN(self.dis)
                elif loss == "relativistic-hinge":
                    loss_func = Losses.RelativisticAverageHingeGAN(self.dis)
            else:
                assert loss in ["conditional-loss"]
                if loss == "conditional-loss":
                    loss_func = Losses.ConditionalGANLoss(self.dis)

        return loss_func
コード例 #3
0
def train():
    opt.n_SPA_blocks = 2
    opt.nframes = 5
    opt.groups = 8
    opt.front_RBs = 20
    opt.back_RBs = 40
    opt.train_batch_size = 4
    opt.num_workers = 8

    print(opt)
    Best = 0
    transform = transforms.Compose([transforms.ToTensor()])
    opt.manualSeed = random.randint(1, 10000)
    opt.saveDir = os.path.join(opt.exp, opt.ModelName)
    create_exp_dir(opt.saveDir)
    device = torch.device("cuda:7")

    train_data = DatasetFromFolder(opt)
    train_dataloader = DataLoader(train_data,
                                  batch_size=opt.train_batch_size,
                                  shuffle=True,
                                  num_workers=opt.num_workers,
                                  drop_last=True)
    print('length of train_dataloader: ', len(train_dataloader))  # 6000
    last_epoch = 0

    ## initialize loss writer and logger
    ##############################################################
    loss_dir = os.path.join(opt.saveDir, 'loss')
    loss_writer = SummaryWriter(loss_dir)
    print("loss dir", loss_dir)
    trainLogger = open('%s/train.log' % opt.saveDir, 'w')
    ##############################################################

    model = EDPN.EDPN(opt)
    model.train()
    model.cuda()

    criterionCharb = Losses.CharbonnierLoss()
    criterionCharb.cuda()

    lr = opt.lr
    optimizer = torch.optim.Adam(params=model.parameters(),
                                 lr=lr,
                                 betas=(opt.beta1, opt.beta2))

    iteration = 0

    for epoch in range(opt.max_epoch):
        if epoch < last_epoch:
            continue
        for _, batch in enumerate(train_dataloader, 0):
            iteration += 1

            inputs, target = batch
            inputs, target = inputs.cuda(), target.cuda()
            inputs = torch.cat(
                (torch.unsqueeze(inputs, 1), torch.unsqueeze(inputs, 1),
                 torch.unsqueeze(inputs, 1), torch.unsqueeze(
                     inputs, 1), torch.unsqueeze(inputs, 1)), 1)
            out = model(inputs)

            optimizer.zero_grad()

            CharbLoss1 = criterionCharb(out, target)
            AllLoss = CharbLoss1
            AllLoss.backward()
            optimizer.step()

            prediction = torch.clamp(out, 0.0, 1.0)

            if iteration % 2 == 0:
                PPsnr = compute_psnr(tensor2np(prediction[0, :, :, :]),
                                     tensor2np(target[0, :, :, :]))
                if PPsnr == float('inf'):
                    PPsnr = 99
                AllPSNR += PPsnr
                print('[%d/%d][%d] AllLoss:%.10f|CharbLoss:%.10f|PSNR:%.6f' %
                      (epoch, opt.max_epoch, iteration, AllLoss.item(),
                       CharbLoss1.item(), PPsnr))
                trainLogger.write(
                    ('[%d/%d][%d] AllLoss:%.10f|CharbLoss:%.10f|PSNR:%.6f' %
                     (epoch, opt.max_epoch, iteration, AllLoss.item(),
                      CharbLoss1.item(), PPsnr)) + '\n')

                loss_writer.add_scalar('CharbLoss', CharbLoss1.item(),
                                       iteration)
                loss_writer.add_scalar('PSNR', PPsnr, iteration)
                trainLogger.flush()

            if iteration % 5000 == 0:
                loss_writer.add_image(
                    'Prediction', prediction[0, :, :, :],
                    iteration)  # x.size= (3, 266, 530) (C*H*W)
                loss_writer.add_image('target', target[0, :, :, :], iteration)

            if iteration % opt.saveStep == 0:
                is_best = AllPSNR > Best
                Best = max(AllPSNR, Best)
                if is_best or iteration % (opt.saveStep * 5) == 0:
                    prefix = opt.saveDir + '/DeblurSR_iter{}'.format(
                        iteration) + '+PSNR' + str(Best)
                    file_name = time.strftime(prefix + '%m%d_%H_%M_%S.pth')
                    checkpoint = {
                        'epoch': epoch,
                        'iteration': iteration,
                        "optimizer": optimizer.state_dict(),
                        "model": model.state_dict(),
                        "lr": lr
                    }
                torch.save(checkpoint, file_name)
                print('model saved to ==>' + file_name)
                AllPSNR = 0

            if (iteration + 1) % opt.decay_step == 0:
                lr = lr * opt.lr_decay
                for param_group in optimizer.param_groups:
                    param_group['lr'] = lr

    trainLogger.close()