def test_one_image(args, dt_config, dataset_class): input_size = (475, 475) model_path = args.snapshot dataset_instance = dataset_class(data_path=dt_config.DATA_PATH) num_classes = dataset_instance.num_classes model = PSPNet(num_classes=num_classes) model.load_state_dict(torch.load(model_path)["state_dict"]) model.eval() img = cv2.imread(args.image_path) processed_img = cv2.resize(img, input_size) overlay = np.copy(processed_img) processed_img = processed_img / 255.0 processed_img = torch.tensor( processed_img.transpose(2, 0, 1)[np.newaxis, :]).float() if torch.cuda.is_available(): model = model.cuda() processed_img = processed_img.cuda() output = model(processed_img)[0] mask = output.data.max(1)[1].cpu().numpy().reshape(475, 475) color_mask = np.array(dataset_instance.colors)[mask] alpha = args.alpha overlay = (((1 - alpha) * overlay) + (alpha * color_mask)).astype("uint8") overlay = cv2.resize(overlay, (img.shape[1], img.shape[0])) cv2.imwrite("result.jpg", overlay)
def main(): net = PSPNet(num_classes=num_classes) if len(args['snapshot']) == 0: # net.load_state_dict(torch.load(os.path.join(ckpt_path, 'cityscapes (coarse)-psp_net', 'xx.pth'))) curr_epoch = 1 args['best_record'] = {'epoch': 0, 'iter': 0, 'val_loss': 1e10, 'acc': 0, 'acc_cls': 0, 'mean_iu': 0, 'fwavacc': 0} else: print('training resumes from ' + args['snapshot']) net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot']))) split_snapshot = args['snapshot'].split('_') curr_epoch = int(split_snapshot[1]) + 1 args['best_record'] = {'epoch': int(split_snapshot[1]), 'iter': int(split_snapshot[3]), 'val_loss': float(split_snapshot[5]), 'acc': float(split_snapshot[7]), 'acc_cls': float(split_snapshot[9]),'mean_iu': float(split_snapshot[11]), 'fwavacc': float(split_snapshot[13])} net.cuda().train() mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) train_joint_transform = joint_transforms.Compose([ joint_transforms.Scale(args['longer_size']), joint_transforms.RandomRotate(10), joint_transforms.RandomHorizontallyFlip() ]) sliding_crop = joint_transforms.SlidingCrop(args['crop_size'], args['stride_rate'], ignore_label) train_input_transform = standard_transforms.Compose([ standard_transforms.ToTensor(), standard_transforms.Normalize(*mean_std) ]) val_input_transform = standard_transforms.Compose([ standard_transforms.ToTensor(), standard_transforms.Normalize(*mean_std) ]) target_transform = extended_transforms.MaskToTensor() visualize = standard_transforms.Compose([ standard_transforms.Scale(args['val_img_display_size']), standard_transforms.ToTensor() ]) train_set = Retinaimages('training', joint_transform=train_joint_transform, sliding_crop=sliding_crop, transform=train_input_transform, target_transform=target_transform) train_loader = DataLoader(train_set, batch_size=args['train_batch_size'], num_workers=2, shuffle=True) val_set = Retinaimages('validate', transform=val_input_transform, sliding_crop=sliding_crop, target_transform=target_transform) val_loader = DataLoader(val_set, batch_size=1, num_workers=2, shuffle=False) criterion = CrossEntropyLoss2d(size_average=True).cuda() optimizer = optim.SGD([ {'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'], 'lr': 2 * args['lr']}, {'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'], 'lr': args['lr'], 'weight_decay': args['weight_decay']} ], momentum=args['momentum'], nesterov=True) if len(args['snapshot']) > 0: optimizer.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, 'opt_' + args['snapshot']))) optimizer.param_groups[0]['lr'] = 2 * args['lr'] optimizer.param_groups[1]['lr'] = args['lr'] check_mkdir(ckpt_path) check_mkdir(os.path.join(ckpt_path, exp_name)) open(os.path.join(ckpt_path, exp_name, "_1" + '.txt'), 'w').write(str(args) + '\n\n') train(train_loader, net, criterion, optimizer, curr_epoch, args, val_loader, visualize, val_set)
# num_classes=2, # pretrained_backbone=None, # ) #------------------------------------------------------------------------------ # Summary network #------------------------------------------------------------------------------ model.train() model.summary(input_shape=(3, args.input_sz, args.input_sz), device='cpu') #------------------------------------------------------------------------------ # Measure time #------------------------------------------------------------------------------ input = torch.randn([1, 3, args.input_sz, args.input_sz], dtype=torch.float) if args.use_cuda: model.cuda() input = input.cuda() for _ in range(10): model(input) start_time = time() for _ in range(args.n_measures): model(input) finish_time = time() if args.use_cuda: print("Inference time on cuda: %.2f [ms]" % ((finish_time - start_time) * 1000 / args.n_measures)) print("Inference fps on cuda: %.2f [fps]" % (1 / ((finish_time - start_time) / args.n_measures)))