コード例 #1
0
class Agent():
    def __init__(self, state_size, action_size, config):
        self.env_name = config["env_name"]
        self.state_size = state_size
        self.action_size = action_size
        self.seed = config["seed"]
        self.clip = config["clip"]
        self.device = 'cuda'
        print("Clip ", self.clip)
        print("cuda ", torch.cuda.is_available())
        self.double_dqn = config["DDQN"]
        print("Use double dqn", self.double_dqn)
        self.lr_pre = config["lr_pre"]
        self.batch_size = config["batch_size"]
        self.lr = config["lr"]
        self.tau = config["tau"]
        print("self tau", self.tau)
        self.gamma = 0.99
        self.fc1 = config["fc1_units"]
        self.fc2 = config["fc2_units"]
        self.fc3 = config["fc3_units"]
        self.qnetwork_local = QNetwork(state_size, action_size, self.fc1, self.fc2, self.fc3, self.seed).to(self.device)
        self.qnetwork_target = QNetwork(state_size, action_size, self.fc1, self.fc2,self.fc3,  self.seed).to(self.device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=self.lr)
        self.soft_update(self.qnetwork_local, self.qnetwork_target, 1)
        
        self.q_shift_local = QNetwork(state_size, action_size, self.fc1, self.fc2, self.fc3, self.seed).to(self.device)
        self.q_shift_target = QNetwork(state_size, action_size, self.fc1, self.fc2, self.fc3, self.seed).to(self.device)
        self.optimizer_shift = optim.Adam(self.q_shift_local.parameters(), lr=self.lr)
        self.soft_update(self.q_shift_local, self.q_shift_target, 1)
         
        self.R_local = QNetwork(state_size, action_size, self.fc1, self.fc2, self.fc3,  self.seed).to(self.device)
        self.R_target = QNetwork(state_size, action_size, self.fc1, self.fc2, self.fc3, self.seed).to(self.device)
        self.optimizer_r = optim.Adam(self.R_local.parameters(), lr=self.lr)
        self.soft_update(self.R_local, self.R_target, 1) 

        self.expert_q = DQNetwork(state_size, action_size, seed=self.seed).to(self.device)
        self.expert_q.load_state_dict(torch.load('checkpoint.pth'))
        self.memory = Memory(action_size, config["buffer_size"], self.batch_size, self.seed, self.device)
        self.t_step = 0
        self.steps = 0
        self.predicter = Classifier(state_size, action_size, self.seed).to(self.device)
        self.optimizer_pre = optim.Adam(self.predicter.parameters(), lr=self.lr_pre)
        pathname = "lr_{}_batch_size_{}_fc1_{}_fc2_{}_fc3_{}_seed_{}".format(self.lr, self.batch_size, self.fc1, self.fc2, self.fc3, self.seed)
        pathname += "_clip_{}".format(config["clip"])
        pathname += "_tau_{}".format(config["tau"])
        now = datetime.now()    
        dt_string = now.strftime("%d_%m_%Y_%H:%M:%S")
        pathname += dt_string
        tensorboard_name = str(config["locexp"]) + '/runs/' + pathname
        self.writer = SummaryWriter(tensorboard_name)
        print("summery writer ", tensorboard_name)
        self.average_prediction = deque(maxlen=100)
        self.average_same_action = deque(maxlen=100)
        self.all_actions = []
        for a in range(self.action_size):
            action = torch.Tensor(1) * 0 +  a
            self.all_actions.append(action.to(self.device))
    
    
    def learn(self, memory):
        logging.debug("--------------------------New episode-----------------------------------------------")
        states, next_states, actions, dones = memory.expert_policy(self.batch_size)
        self.steps += 1
        self.state_action_frq(states, actions)
        self.compute_shift_function(states, next_states, actions, dones)
        for i in range(1):
            for a in range(self.action_size):
                action =  torch.ones([self.batch_size, 1], device= self.device) * a
                self.compute_r_function(states, action)

        self.compute_q_function(states, next_states, actions, dones)
        self.soft_update(self.q_shift_local, self.q_shift_target, self.tau)
        self.soft_update(self.R_local, self.R_target, self.tau)
        self.soft_update(self.qnetwork_local, self.qnetwork_target, self.tau)
        return
    
    def learn_predicter(self, memory):
        """

        """
        states, next_states, actions, dones = memory.expert_policy(self.batch_size)
        self.state_action_frq(states, actions)
    
    def state_action_frq(self, states, action):
        """ Train classifer to compute state action freq
        """ 
        self.predicter.train()
        output = self.predicter(states, train=True)
        output = output.squeeze(0)
        # logging.debug("out predicter {})".format(output))

        y = action.type(torch.long).squeeze(1)
        #print("y shape", y.shape)
        loss = nn.CrossEntropyLoss()(output, y)
        self.optimizer_pre.zero_grad()
        loss.backward()
        #torch.nn.utils.clip_grad_norm_(self.predicter.parameters(), 1)
        self.optimizer_pre.step()
        self.writer.add_scalar('Predict_loss', loss, self.steps)
        self.predicter.eval()

    def test_predicter(self, memory):
        """

        """
        self.predicter.eval()
        same_state_predition = 0
        for i in range(memory.idx):
            states = memory.obses[i]
            actions = memory.actions[i]
        
            states = torch.as_tensor(states, device=self.device).unsqueeze(0)
            actions = torch.as_tensor(actions, device=self.device)
            output = self.predicter(states)   
            output = F.softmax(output, dim=1)
            # create one hot encode y from actions
            y = actions.type(torch.long).item()
            p =torch.argmax(output.data).item()
            if y==p:
                same_state_predition += 1

        
        #self.average_prediction.append(same_state_predition)
        #average_pred = np.mean(self.average_prediction)
        #self.writer.add_scalar('Average prediction acc', average_pred, self.steps)
        #logging.debug("Same prediction {} of 100".format(same_state_predition))
        text = "Same prediction {} of {} ".format(same_state_predition, memory.idx)
        print(text)
        # self.writer.add_scalar('Action prediction acc', same_state_predition, self.steps)
        self.predicter.train()


    def get_action_prob(self, states, actions):
        """
        """
        actions = actions.type(torch.long)
        # check if action prob is zero
        output = self.predicter(states)
        output = F.softmax(output, dim=1)
        # print("get action_prob ", output) 
        # output = output.squeeze(0)
        action_prob = output.gather(1, actions)
        action_prob = action_prob + torch.finfo(torch.float32).eps
        # check if one action if its to small
        if action_prob.shape[0] == 1:
            if action_prob.cpu().detach().numpy()[0][0] < 1e-4:
                return None
        # logging.debug("action_prob {})".format(action_prob))
        action_prob = torch.log(action_prob)
        action_prob = torch.clamp(action_prob, min= self.clip, max=0)
        return action_prob

    def compute_shift_function(self, states, next_states, actions, dones):
        """Update value parameters using given batch of experience tuples.
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        actions = actions.type(torch.int64)
        with torch.no_grad():
            # Get max predicted Q values (for next states) from target model
            if self.double_dqn:
                qt = self.q_shift_local(next_states)
                max_q, max_actions = qt.max(1)
                Q_targets_next = self.qnetwork_target(next_states).gather(1, max_actions.unsqueeze(1))
            else:
                Q_targets_next = self.qnetwork_target(next_states).max(1)[0].unsqueeze(1)
            # Compute Q targets for current states
            Q_targets = (self.gamma * Q_targets_next * (dones))

        # Get expected Q values from local model
        Q_expected = self.q_shift_local(states).gather(1, actions)

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer_shift.zero_grad()
        loss.backward()
        self.writer.add_scalar('Shift_loss', loss, self.steps)
        self.optimizer_shift.step()


    def compute_r_function(self, states, actions, debug=False, log=False):
        """

        """
        actions = actions.type(torch.int64)
        
        # sum all other actions
        # print("state shape ", states.shape)
        size = states.shape[0]
        idx = 0
        all_zeros = []
        with torch.no_grad():
            y_shift = self.q_shift_target(states).gather(1, actions)
            log_a = self.get_action_prob(states, actions)
            index_list = index_None_value(log_a)
            # print("is none", index_list)
            if index_list is None:
                return


            y_r_part1 = log_a - y_shift
            y_r_part2 =  torch.empty((size, 1), dtype=torch.float32).to(self.device)
            for a, s in zip(actions, states):
                y_h = 0
                taken_actions = 0
                for b in self.all_actions:
                    b = b.type(torch.int64).unsqueeze(1)
                    n_b = self.get_action_prob(s.unsqueeze(0), b)
                    if torch.eq(a, b) or n_b is None:
                        logging.debug("best action {} ".format(a))
                        logging.debug("n_b action {} ".format(b))
                        logging.debug("n_b {} ".format(n_b))
                        continue
                    taken_actions += 1
                    r_hat = self.R_target(s.unsqueeze(0)).gather(1, b)

                    y_s = self.q_shift_target(s.unsqueeze(0)).gather(1, b)
                    n_b = n_b - y_s

                    y_h += (r_hat - n_b)
                    if debug:
                        print("action", b.item())
                        print("r_pre {:.3f}".format(r_hat.item()))
                        print("n_b {:.3f}".format(n_b.item()))
                if taken_actions == 0:
                    all_zeros.append(idx)
                else:
                    y_r_part2[idx] = (1. / taken_actions)  * y_h
                idx += 1
            #print(y_r_part2, y_r_part1)
            y_r = y_r_part1 + y_r_part2
            #print("_________________")
            #print("r update zeros ", len(all_zeros))
        if len(index_list) > 0:
            print("none list", index_list)
        y = self.R_local(states).gather(1, actions)
        if log:
            text = "Action {:.2f}  y target {:.2f} =  n_a {:.2f} + {:.2f} and pre{:.2f}".format(actions.item(), y_r.item(), y_r_part1.item(), y_r_part2.item(), y.item())
            logging.debug(text)

        if debug:
            print("expet action ", actions.item())
            # print("y r {:.3f}".format(y.item()))
            # print("log a prob {:.3f}".format(log_a.item()))
            # print("n_a {:.3f}".format(y_r_part1.item()))
            print("Correct action p {:.3f} ".format(y.item()))
            print("Correct action target {:.3f} ".format(y_r.item()))
            print("part1 corret action {:.2f} ".format(y_r_part1.item()))
            print("part2 incorret action {:.2f} ".format(y_r_part2.item()))
        
        #print("y", y.shape)
        #print("y_r", y_r.shape)
        
        r_loss = F.mse_loss(y, y_r)
        
        #con = input()
        #sys.exit()
        # Minimize the loss
        self.optimizer_r.zero_grad()
        r_loss.backward()
        #torch.nn.utils.clip_grad_norm_(self.R_local.parameters(), 5)
        self.optimizer_r.step()
        self.writer.add_scalar('Reward_loss', r_loss, self.steps)
        if debug:
            print("after update r pre ", self.R_local(states).gather(1, actions).item())
            print("after update r target ", self.R_target(states).gather(1, actions).item())
        # ------------------- update target network ------------------- #
        #self.soft_update(self.R_local, self.R_target, 5e-3)
        if debug:
            print("after soft upda r target ", self.R_target(states).gather(1, actions).item())
    
    def compute_q_function(self, states, next_states, actions, dones, debug=False, log= False):
        """Update value parameters using given batch of experience tuples.
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        actions = actions.type(torch.int64)
        if debug:
            print("---------------q_update------------------")
            print("expet action ", actions.item())
            print("state ", states)
        with torch.no_grad():
            # Get max predicted Q values (for next states) from target model
            if self.double_dqn:
                qt = self.qnetwork_local(next_states)
                max_q, max_actions = qt.max(1)
                Q_targets_next = self.qnetwork_target(next_states).gather(1, max_actions.unsqueeze(1))
            else:
                Q_targets_next = self.qnetwork_target(next_states).max(1)[0].unsqueeze(1)
            # Compute Q targets for current states
            rewards = self.R_target(states).gather(1, actions)
            Q_targets = rewards + (self.gamma * Q_targets_next * (dones))
            if debug:
                print("reward  {}".format(rewards.item()))
                print("Q target next {}".format(Q_targets_next.item()))
                print("Q_target {}".format(Q_targets.item()))



        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)
        if log:
            text = "Action {:.2f}  q target {:.2f} =  r_a {:.2f} + target {:.2f} and pre{:.2f}".format(actions.item(), Q_targets.item(), rewards.item(), Q_targets_next.item(), Q_expected.item())
            logging.debug(text)
        if debug:
            print("q for a {}".format(Q_expected))
        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        self.writer.add_scalar('Q_loss', loss, self.steps)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        if debug:
            print("q after update {}".format(self.qnetwork_local(states)))
            print("q loss {}".format(loss.item()))


        # ------------------- update target network ------------------- #



    def dqn_train(self, n_episodes=2000, max_t=1000, eps_start=1.0, eps_end=0.01, eps_decay=0.995):
        env =  gym.make('LunarLander-v2')
        scores = []                        # list containing scores from each episode
        scores_window = deque(maxlen=100)  # last 100 scores
        eps = eps_start
        for i_episode in range(1, n_episodes+1):
            state = env.reset()
            score = 0
            for t in range(max_t):
                self.t_step += 1
                action = self.dqn_act(state, eps)
                next_state, reward, done, _ = env.step(action)
                self.step(state, action, reward, next_state, done)
                state = next_state
                score += reward
                if done:
                    self.test_q()
                    break
            scores_window.append(score)       # save most recent score
            scores.append(score)              # save most recent score
            eps = max(eps_end, eps_decay*eps) # decrease epsilon
            print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window)), end="")
            if i_episode % 100 == 0:
                print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window)))
            if np.mean(scores_window)>=200.0:
                print('\nEnvironment solved in {:d} episodes!\tAverage Score: {:.2f}'.format(i_episode-100, np.mean(scores_window)))
                break



    def test_policy(self):
        env =  gym.make('LunarLander-v2')
        logging.debug("new episode")
        average_score = [] 
        average_steps = []
        average_action = []
        for i in range(5):
            state = env.reset()
            score = 0
            same_action = 0
            logging.debug("new episode")
            for t in range(200):
                state = torch.from_numpy(state).float().unsqueeze(0).to(self.device)
                q_expert = self.expert_q(state)
                q_values = self.qnetwork_local(state)
                logging.debug("q expert a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}".format(q_expert.data[0][0], q_expert.data[0][1], q_expert.data[0][2], q_expert.data[0][3]))
                logging.debug("q values a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}  )".format(q_values.data[0][0], q_values.data[0][1], q_values.data[0][2], q_values.data[0][3]))
                action = torch.argmax(q_values).item()
                action_e = torch.argmax(q_expert).item()
                if action == action_e:
                    same_action += 1
                next_state, reward, done, _ = env.step(action)
                state = next_state
                score += reward
                if done:
                    average_score.append(score)
                    average_steps.append(t)
                    average_action.append(same_action)
                    break
        mean_steps = np.mean(average_steps)
        mean_score = np.mean(average_score)
        mean_action= np.mean(average_action)
        self.writer.add_scalar('Ave_epsiode_length', mean_steps , self.steps)
        self.writer.add_scalar('Ave_same_action', mean_action, self.steps)
        self.writer.add_scalar('Ave_score', mean_score, self.steps)


    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % 4
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > self.batch_size:
                experiences = self.memory.sample()
                self.update_q(experiences)


    def dqn_act(self, state, eps=0.):
        """Returns actions for given state as per current policy.

        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def update_q(self, experiences, debug=False):
        """Update value parameters using given batch of experience tuples.
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences
        # Get max predicted Q values (for next states) from target model
        with torch.no_grad():
            Q_targets_next = self.qnetwork_target(next_states).max(1)[0].unsqueeze(1)
            # Compute Q targets for current states
            Q_targets = rewards + (self.gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)
        if debug:
            print("----------------------")
            print("----------------------")
            print("Q target", Q_targets)
            print("pre", Q_expected)
            print("all local",self.qnetwork_local(states))

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target)



    def test_q(self):
        experiences = self.memory.test_sample()
        self.update_q(experiences, True)

    def test_q_value(self, memory):
        same_action = 0
        test_elements = memory.idx
        all_diff = 0
        error = True
        self.predicter.eval()
        for i in range(test_elements):
            # print("lop", i)
            states = memory.obses[i]
            next_states = memory.next_obses[i]
            actions = memory.actions[i]
            dones = memory.not_dones[i]
            states = torch.as_tensor(states, device=self.device).unsqueeze(0)
            next_states = torch.as_tensor(next_states, device=self.device)
            actions = torch.as_tensor(actions, device=self.device)
            dones = torch.as_tensor(dones, device=self.device)
            with torch.no_grad():
                output = self.predicter(states)
                output = F.softmax(output, dim=1)
                q_values = self.qnetwork_local(states)
                expert_values = self.expert_q(states)
                print("q values ", q_values)
                print("ex values  ", expert_values)
                best_action = torch.argmax(q_values).item()
                actions = actions.type(torch.int64)
                q_max = q_values.max(1)
                
                #print("q values", q_values)
                q = q_values[0][actions.item()].item()
                #print("q action", q)
                max_q =  q_max[0].data.item()
                diff = max_q - q
                all_diff += diff
                #print("q best", max_q)
                #print("difference ", diff)
            if  actions.item() != best_action:
                r = self.R_local(states)
                rt = self.R_target(states)
                qt = self.qnetwork_target(states)
                logging.debug("------------------false action --------------------------------")
                logging.debug("expert action  {})".format(actions.item()))
                logging.debug("out predicter a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}  )".format(output.data[0][0], output.data[0][1], output.data[0][2], output.data[0][3]))
                logging.debug("q values a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}  )".format(q_values.data[0][0], q_values.data[0][1], q_values.data[0][2], q_values.data[0][3]))
                logging.debug("q target a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}  )".format(qt.data[0][0], qt.data[0][1], qt.data[0][2], qt.data[0][3]))
                logging.debug("rewards a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}  )".format(r.data[0][0], r.data[0][1], r.data[0][2], r.data[0][3]))
                logging.debug("re target a0: {:.2f} a1: {:.2f} a2: {:.2f} a3: {:.2f}  )".format(rt.data[0][0], rt.data[0][1], rt.data[0][2], rt.data[0][3]))
                """ 
                logging.debug("---------Reward Function------------")
                action = torch.Tensor(1) * 0 +  0
                self.compute_r_function(states, action.unsqueeze(0).to(self.device), log= True)
                action = torch.Tensor(1) * 0 +  1
                self.compute_r_function(states, action.unsqueeze(0).to(self.device), log= True)
                action = torch.Tensor(1) * 0 +  2
                self.compute_r_function(states, action.unsqueeze(0).to(self.device), log= True)
                action = torch.Tensor(1) * 0 +  3
                self.compute_r_function(states, action.unsqueeze(0).to(self.device), log= True)
                logging.debug("------------------Q Function --------------------------------")
                action = torch.Tensor(1) * 0 +  0
                self.compute_q_function(states, next_states.unsqueeze(0), action.unsqueeze(0).to(self.device), dones, log= True)
                action = torch.Tensor(1) * 0 +  1
                self.compute_q_function(states, next_states.unsqueeze(0), action.unsqueeze(0).to(self.device), dones, log= True)
                action = torch.Tensor(1) * 0 +  2
                self.compute_q_function(states, next_states.unsqueeze(0), action.unsqueeze(0).to(self.device), dones, log= True)
                action = torch.Tensor(1) * 0 +  3
                self.compute_q_function(states, next_states.unsqueeze(0), action.unsqueeze(0).to(self.device), dones, log= True)
                """
                

            if  actions.item() == best_action:
                same_action += 1
                continue
                print("-------------------------------------------------------------------------------")
                print("state ", i)
                print("expert ", actions)
                print("q values", q_values.data)
                print("action prob predicter  ", output.data)
                self.compute_r_function(states, actions.unsqueeze(0), True)
                self.compute_q_function(states, next_states.unsqueeze(0), actions.unsqueeze(0), dones, True)
            else:
                if error:
                    continue
                    print("-------------------------------------------------------------------------------")
                    print("expert action ", actions.item())
                    print("best action q ", best_action)
                    print(i)
                    error = False
                continue
                # logging.debug("experte action  {} q fun {}".format(actions.item(), q_values))
                print("-------------------------------------------------------------------------------")
                print("state ", i)
                print("expert ", actions)
                print("q values", q_values.data)
                print("action prob predicter  ", output.data)
                self.compute_r_function(states, actions.unsqueeze(0), True)
                self.compute_q_function(states, next_states.unsqueeze(0), actions.unsqueeze(0), dones, True)


        self.writer.add_scalar('diff', all_diff, self.steps)
        self.average_same_action.append(same_action)
        av_action = np.mean(self.average_same_action)
        self.writer.add_scalar('Same_action', same_action, self.steps)
        print("Same actions {}  of {}".format(same_action, test_elements))
        self.predicter.train()


    def soft_update(self, local_model, target_model, tau=4):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter
        """
        # print("use tau", tau)
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
    
    def save(self, filename):
        """

        """
        mkdir("", filename)
        torch.save(self.predicter.state_dict(), filename + "_predicter.pth")
        torch.save(self.optimizer_pre.state_dict(), filename + "_predicter_optimizer.pth")
        torch.save(self.qnetwork_local.state_dict(), filename + "_q_net.pth")
        """
        torch.save(self.optimizer_q.state_dict(), filename + "_q_net_optimizer.pth")
        torch.save(self.q_shift_local.state_dict(), filename + "_q_shift_net.pth")
        torch.save(self.optimizer_q_shift.state_dict(), filename + "_q_shift_net_optimizer.pth")
        """
        print("save models to {}".format(filename))
    
    def load(self, filename):
        self.predicter.load_state_dict(torch.load(filename + "_predicter.pth"))
        self.optimizer_pre.load_state_dict(torch.load(filename + "_predicter_optimizer.pth"))
        print("Load models to {}".format(filename))
コード例 #2
0
class Agent():
    def __init__(self, state_size, action_size, config):
        self.seed = config["seed"]
        torch.manual_seed(self.seed)
        np.random.seed(seed=self.seed)
        random.seed(self.seed)
        env = gym.make(config["env_name"])
        self.env = FrameStack(env, config)
        self.env.seed(self.seed)
        self.state_size = state_size
        self.action_size = action_size
        self.clip = config["clip"]
        self.device = 'cuda'
        self.double_dqn = config["DDQN"]
        self.lr_pre = config["lr_pre"]
        self.batch_size = config["batch_size"]
        self.lr = config["lr"]
        self.tau = config["tau"]
        self.gamma = 0.99
        self.fc1 = config["fc1_units"]
        self.fc2 = config["fc2_units"]
        self.qnetwork_local = QNetwork(state_size, action_size, self.fc1,
                                       self.fc2, self.seed).to(self.device)
        self.qnetwork_target = QNetwork(state_size, action_size, self.fc1,
                                        self.fc2, self.seed).to(self.device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(),
                                    lr=self.lr)
        self.soft_update(self.qnetwork_local, self.qnetwork_target, 1)
        self.q_shift_local = QNetwork(state_size, action_size, self.fc1,
                                      self.fc2, self.seed).to(self.device)
        self.q_shift_target = QNetwork(state_size, action_size, self.fc1,
                                       self.fc2, self.seed).to(self.device)
        self.optimizer_shift = optim.Adam(self.q_shift_local.parameters(),
                                          lr=self.lr)
        self.soft_update(self.q_shift_local, self.q_shift_target, 1)
        self.R_local = QNetwork(state_size, action_size, self.fc1, self.fc2,
                                self.seed).to(self.device)
        self.R_target = QNetwork(state_size, action_size, self.fc1, self.fc2,
                                 self.seed).to(self.device)
        self.optimizer_r = optim.Adam(self.R_local.parameters(), lr=self.lr)
        self.soft_update(self.R_local, self.R_target, 1)
        self.steps = 0
        self.predicter = QNetwork(state_size, action_size, self.fc1, self.fc2,
                                  self.seed).to(self.device)
        self.optimizer_pre = optim.Adam(self.predicter.parameters(),
                                        lr=self.lr_pre)
        #self.encoder_freq = Encoder(config).to(self.device)
        #self.encoder_optimizer_frq = torch.optim.Adam(self.encoder_freq.parameters(), self.lr)
        self.encoder = Encoder(config).to(self.device)
        self.encoder_optimizer = torch.optim.Adam(self.encoder.parameters(),
                                                  self.lr)
        pathname = "lr_{}_batch_size_{}_fc1_{}_fc2_{}_seed_{}".format(
            self.lr, self.batch_size, self.fc1, self.fc2, self.seed)
        pathname += "_clip_{}".format(config["clip"])
        pathname += "_tau_{}".format(config["tau"])
        now = datetime.now()
        dt_string = now.strftime("%d_%m_%Y_%H:%M:%S")
        pathname += dt_string
        tensorboard_name = str(config["locexp"]) + '/runs/' + pathname
        self.vid_path = str(config["locexp"]) + '/vid'
        self.writer = SummaryWriter(tensorboard_name)
        self.average_prediction = deque(maxlen=100)
        self.average_same_action = deque(maxlen=100)
        self.all_actions = []
        for a in range(self.action_size):
            action = torch.Tensor(1) * 0 + a
            self.all_actions.append(action.to(self.device))

    def learn(self, memory_ex):
        logging.debug(
            "--------------------------New update-----------------------------------------------"
        )
        self.steps += 1
        states, next_states, actions, dones = memory_ex.expert_policy(
            self.batch_size)
        states = states.type(torch.float32).div_(255)
        states = self.encoder.create_vector(states)
        next_states = next_states.type(torch.float32).div_(255)
        next_states = self.encoder.create_vector(next_states)
        self.state_action_frq(states, actions)
        actions = torch.randint(0,
                                3, (self.batch_size, 1),
                                dtype=torch.int64,
                                device=self.device)
        self.compute_shift_function(states.detach(), next_states, actions,
                                    dones)
        self.compute_r_function(states.detach(), actions)
        self.compute_q_function(states.detach(), next_states, actions, dones)
        self.soft_update(self.R_local, self.R_target, self.tau)
        self.soft_update(self.q_shift_local, self.q_shift_target, self.tau)
        self.soft_update(self.qnetwork_local, self.qnetwork_target, self.tau)
        return

    def compute_q_function(self, states, next_states, actions, dones):
        """Update value parameters using given batch of experience tuples. """
        actions = actions.type(torch.int64)
        # Get max predicted Q values (for next states) from target model
        if self.double_dqn:
            q_values = self.qnetwork_local(next_states).detach()
            _, best_action = q_values.max(1)
            best_action = best_action.unsqueeze(1)
            Q_targets_next = self.qnetwork_target(next_states).detach()
            Q_targets_next = Q_targets_next.gather(1, best_action)
        else:
            Q_targets_next = self.qnetwork_target(next_states).detach().max(
                1)[0].unsqueeze(1)
        # Compute Q targets for current states
        # Get expected Q values from local model
        # Compute loss
        rewards = self.R_target(states).detach().gather(
            1, actions.detach()).squeeze(0)
        Q_targets = rewards + (self.gamma * Q_targets_next * (dones))
        Q_expected = self.qnetwork_local(states).gather(1, actions)
        loss = F.mse_loss(Q_expected, Q_targets.detach())
        # Get max predicted Q values (for next states) from target model
        self.writer.add_scalar('Q_loss', loss, self.steps)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.encoder_optimizer.step()
        # torch.nn.utils.clip_grad_norm_(self.qnetwork_local.parameters(), 1)
        self.optimizer.step()

    def compute_shift_function(self, states, next_states, actions, dones):
        """Update Q shift parameters using given batch of experience tuples  """
        actions = actions.type(torch.int64)
        with torch.no_grad():
            # Get max predicted Q values (for next states) from target model
            if self.double_dqn:
                q_shift = self.q_shift_local(next_states)
                max_q, max_actions = q_shift.max(1)
                Q_targets_next = self.qnetwork_target(next_states).gather(
                    1, max_actions.unsqueeze(1))
            else:
                Q_targets_next = self.qnetwork_target(
                    next_states).detach().max(1)[0].unsqueeze(1)
            # Compute Q targets for current states
            Q_targets = self.gamma * Q_targets_next
        # Get expected Q values from local model
        Q_expected = self.q_shift_local(states).gather(1, actions)
        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets.detach())
        # Minimize the loss
        self.optimizer_shift.zero_grad()
        loss.backward()
        self.writer.add_scalar('Shift_loss', loss, self.steps)
        self.optimizer_shift.step()

    def compute_r_function(self, states, actions, debug=False, log=False):
        """ compute reward for the state action pair """
        actions = actions.type(torch.int64)
        # sum all other actions
        size = states.shape[0]
        idx = 0
        all_zeros = [1 for i in range(actions.shape[0])]
        zeros = False
        y_shift = self.q_shift_target(states).gather(1, actions).detach()
        log_a = self.get_action_prob(states, actions).detach()
        y_r_part1 = log_a - y_shift
        y_r_part2 = torch.empty((size, 1), dtype=torch.float32).to(self.device)
        for a, s in zip(actions, states):
            y_h = 0
            taken_actions = 0
            for b in self.all_actions:
                b = b.type(torch.int64).unsqueeze(1)
                n_b = self.get_action_prob(s.unsqueeze(0), b)
                if torch.eq(a, b) or n_b is None:
                    continue
                taken_actions += 1
                y_s = self.q_shift_target(s.unsqueeze(0)).detach().gather(
                    1, b).item()
                n_b = n_b.data.item() - y_s
                r_hat = self.R_target(s.unsqueeze(0)).gather(1, b).item()
                y_h += (r_hat - n_b)
                if log:
                    text = "a {} r _hat {:.2f} - n_b  {:.2f} | sh {:.2f} ".format(
                        b.item(), r_hat, n_b, y_s)
                    logging.debug(text)
            if taken_actions == 0:
                all_zeros[idx] = 0
                zeros = True
                y_r_part2[idx] = 0.0
            else:
                y_r_part2[idx] = (1. / taken_actions) * y_h
            idx += 1
            y_r = y_r_part1 + y_r_part2
        # check if there are zeros (no update for this tuble) remove them from states and
        if zeros:
            mask = torch.BoolTensor(all_zeros)
            states = states[mask]
            actions = actions[mask]
            y_r = y_r[mask]
        y = self.R_local(states).gather(1, actions)
        if log:
            text = "Action {:.2f} r target {:.2f} =  n_a {:.2f} + n_b {:.2f}  y {:.2f}".format(
                actions[0].item(), y_r[0].item(), y_r_part1[0].item(),
                y_r_part2[0].item(), y[0].item())
            logging.debug(text)
        r_loss = F.mse_loss(y, y_r.detach())
        # Minimize the loss
        self.optimizer_r.zero_grad()
        r_loss.backward()
        # torch.nn.utils.clip_grad_norm_(self.R_local.parameters(), 5)
        self.optimizer_r.step()
        self.writer.add_scalar('Reward_loss', r_loss, self.steps)

    def get_action_prob(self, states, actions):
        """ compute prob for state action pair """
        actions = actions.type(torch.long)
        # check if action prob is zero
        output = self.predicter(states)
        output = F.softmax(output, dim=1)
        action_prob = output.gather(1, actions)
        action_prob = action_prob + torch.finfo(torch.float32).eps
        # check if one action if its to small
        if action_prob.shape[0] == 1:
            if action_prob.cpu().detach().numpy()[0][0] < 1e-4:
                return None
        action_prob = torch.log(action_prob)
        action_prob = torch.clamp(action_prob, min=self.clip, max=0)
        return action_prob

    def state_action_frq(self, states, action):
        """ Train classifer to compute state action freq """
        self.predicter.train()
        output = self.predicter(states)
        output = output.squeeze(0)
        y = action.type(torch.long).squeeze(1)
        loss = nn.CrossEntropyLoss()(output, y)
        self.optimizer_pre.zero_grad()
        self.encoder_optimizer.zero_grad()
        loss.backward()
        # torch.nn.utils.clip_grad_norm_(self.predicter.parameters(), 1)
        self.optimizer_pre.step()
        self.writer.add_scalar('Predict_loss', loss, self.steps)
        self.predicter.eval()

    def test_predicter(self, memory):
        """ Test the classifier """
        self.predicter.eval()
        same_state_predition = 0
        for i in range(memory.idx):
            states = memory.obses[i]
            actions = memory.actions[i]
            states = torch.as_tensor(states, device=self.device).unsqueeze(0)
            states = states.type(torch.float32).div_(255)
            states = self.encoder.create_vector(states)
            actions = torch.as_tensor(actions, device=self.device)
            output = self.predicter(states)
            output = F.softmax(output, dim=1)
            # create one hot encode y from actions
            y = actions.type(torch.long).item()
            p = torch.argmax(output.data).item()
            if y == p:
                same_state_predition += 1
        text = "Same prediction {} of {} ".format(same_state_predition,
                                                  memory.idx)
        print(text)
        logging.debug(text)

    def soft_update(self, local_model, target_model, tau=4):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter
        """
        # print("use tau", tau)
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)

    def load(self, filename):
        self.predicter.load_state_dict(torch.load(filename + "_predicter.pth"))
        self.optimizer_pre.load_state_dict(
            torch.load(filename + "_predicter_optimizer.pth"))
        self.R_local.load_state_dict(torch.load(filename + "_r_net.pth"))
        self.qnetwork_local.load_state_dict(torch.load(filename +
                                                       "_q_net.pth"))
        print("Load models to {}".format(filename))

    def save(self, filename):
        """
        """
        mkdir("", filename)
        torch.save(self.predicter.state_dict(), filename + "_predicter.pth")
        torch.save(self.optimizer_pre.state_dict(),
                   filename + "_predicter_optimizer.pth")
        torch.save(self.qnetwork_local.state_dict(), filename + "_q_net.pth")
        torch.save(self.optimizer.state_dict(),
                   filename + "_q_net_optimizer.pth")
        torch.save(self.R_local.state_dict(), filename + "_r_net.pth")
        torch.save(self.q_shift_local.state_dict(),
                   filename + "_q_shift_net.pth")
        print("save models to {}".format(filename))

    def test_q_value(self, memory):
        test_elements = memory.idx
        test_elements = 100
        all_diff = 0
        error = True
        used_elements_r = 0
        used_elements_q = 0
        r_error = 0
        q_error = 0
        for i in range(test_elements):
            states = memory.obses[i]
            actions = memory.actions[i]
            states = torch.as_tensor(states, device=self.device).unsqueeze(0)
            states = states.type(torch.float32).div_(255)
            states = self.encoder.create_vector(states)
            actions = torch.as_tensor(actions, device=self.device)
            one_hot = torch.Tensor([0 for i in range(self.action_size)],
                                   device="cpu")
            one_hot[actions.item()] = 1
            with torch.no_grad():
                r_values = self.R_local(states.detach()).detach()
                q_values = self.qnetwork_local(states.detach()).detach()
                soft_r = F.softmax(r_values, dim=1).to("cpu")
                soft_q = F.softmax(q_values, dim=1).to("cpu")
                actions = actions.type(torch.int64)
                kl_q = F.kl_div(soft_q.log(), one_hot, None, None, 'sum')
                kl_r = F.kl_div(soft_r.log(), one_hot, None, None, 'sum')
                if kl_r == float("inf"):
                    pass
                else:
                    r_error += kl_r
                    used_elements_r += 1
                if kl_q == float("inf"):
                    pass
                else:
                    q_error += kl_q
                    used_elements_q += 1

        average_q_kl = q_error / used_elements_q
        average_r_kl = r_error / used_elements_r
        text = "Kl div of Reward {} of {} elements".format(
            average_q_kl, used_elements_r)
        print(text)
        text = "Kl div of Q_values {} of {} elements".format(
            average_r_kl, used_elements_q)
        print(text)
        self.writer.add_scalar('KL_reward', average_r_kl, self.steps)
        self.writer.add_scalar('KL_q_values', average_q_kl, self.steps)

    def act(self, states):
        states = torch.as_tensor(states, device=self.device).unsqueeze(0)
        states = states.type(torch.float32).div_(255)
        states = self.encoder.create_vector(states)
        q_values = self.qnetwork_local(states.detach()).detach()
        action = torch.argmax(q_values).item()
        return action

    def eval_policy(self, record=False, eval_episodes=2):
        if record:
            env = wrappers.Monitor(self.env,
                                   str(self.vid_path) +
                                   "/{}".format(self.steps),
                                   video_callable=lambda episode_id: True,
                                   force=True)
        else:
            env = self.env
        average_reward = 0
        scores_window = deque(maxlen=100)
        s = 0
        for i_epiosde in range(eval_episodes):
            episode_reward = 0
            state = env.reset()
            while True:
                s += 1
                action = self.act(state)
                state, reward, done, _ = env.step(action)
                episode_reward += reward
                if done:
                    break
            scores_window.append(episode_reward)
        if record:
            return
        average_reward = np.mean(scores_window)
        print("Eval Episode {}  average Reward {} ".format(
            eval_episodes, average_reward))
        self.writer.add_scalar('Eval_reward', average_reward, self.steps)
コード例 #3
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed, algorithm='DQN'):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

        # set algorithm
        if algorithm == "DQN":
            self.learn = self.learnDQN
        elif algorithm == "DDQN":
            self.learn = self.learnDDQN
        else:
            raise ('algorithm {} not implemented'.format(algorithm))

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learnDQN(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        ## compute and minimize the loss
        self.optimizer.zero_grad()

        # target (Qsa_next)
        Qsa_next = torch.max(self.qnetwork_target(next_states),
                             dim=1,
                             keepdim=True)[0]
        targets = rewards + gamma * Qsa_next * (1 - dones)

        # output (Qsa)
        action_values = self.qnetwork_local(states)
        outputs = action_values.gather(1, actions)

        loss = F.mse_loss(outputs, targets)
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def learnDDQN(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # Compute and minimize the loss
        self.optimizer.zero_grad()

        # target (Qsa_next)
        next_actions = torch.argmax(self.qnetwork_local(next_states),
                                    dim=1,
                                    keepdim=True)
        Qsa_next = self.qnetwork_target(next_states).gather(1, next_actions)
        targets = rewards + gamma * Qsa_next * (1 - dones)

        # output (Qsa)
        action_values = self.qnetwork_local(states)
        outputs = action_values.gather(1, actions)

        loss = F.mse_loss(outputs, targets)
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
コード例 #4
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)
        print(device)
        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        ##compute and minimize the loss
        state_action_values = self.q_value(states, actions)

        next_state_action_values = self.max_q_value(next_states)
        expected_state_action_values = (next_state_action_values * gamma *
                                        (1 - dones)) + rewards

        loss = F.mse_loss(state_action_values, expected_state_action_values)

        # Optimize the model
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)

    def q_value(self, state, action):
        q_values = self.qnetwork_local(state)
        state_action_value = q_values.gather(1, action)
        return state_action_value

    def max_q_value(self, state):
        max_state_action_value = self.qnetwork_target(state).max(1)[0].detach()
        return max_state_action_value.unsqueeze(1)

    def save(self):
        print("Model save as chechpint.pth")
        torch.save(self.qnetwork_local.state_dict(), 'checkpoint.pth')
コード例 #5
0
def train(args):
    chrome_driver_path = args.chrome_driver_path
    checkpoint_path = args.checkpoint_path
    nb_actions = args.nb_actions
    initial_epsilon = args.initial_epsilon
    epsilon = initial_epsilon
    final_epsilon = args.final_epsilon
    gamma = args.gamma
    nb_memory = args.nb_memory
    nb_expolre = args.nb_expolre
    is_debug = args.is_debug
    batch_size = args.batch_size
    nb_observation = args.nb_observation
    desired_fps = args.desired_fps
    is_cuda = True if args.use_cuda and torch.cuda.is_available() else False
    log_frequency = args.log_frequency
    save_frequency = args.save_frequency
    ratio_of_win = args.ratio_of_win
    if args.exploiting:
        nb_observation = -1
        epsilon = final_epsilon

    seed = 22
    np.random.seed(seed)
    memory = deque()
    env = DinoSeleniumEnv(chrome_driver_path, speed=args.game_speed)
    agent = Agent(env)
    game_state = GameState(agent, debug=is_debug)
    qnetwork = QNetwork(nb_actions)
    if is_cuda:
        qnetwork.cuda()
    optimizer = torch.optim.Adam(qnetwork.parameters(), 1e-4)
    tmp_param = next(qnetwork.parameters())
    try:
        m = torch.load(checkpoint_path)
        qnetwork.load_state_dict(m["qnetwork"])
        optimizer.load_state_dict(m["optimizer"])
    except:
        logger.warn("No model found in {}".format(checkpoint_path))
    loss_fcn = torch.nn.MSELoss()
    action_indx = 0  # do nothing as the first action
    screen, reward, is_gameover, score = game_state.get_state(action_indx)
    current_state = np.expand_dims(screen, 0)
    # [IMAGE_CHANNELS,IMAGE_WIDTH,IMAGE_HEIGHT]
    current_state = np.tile(current_state, (IMAGE_CHANNELS, 1, 1))
    initial_state = current_state

    t = 0
    last_time = 0
    sum_scores = 0
    total_loss = 0
    max_score = 0
    qvalues = np.array([0, 0])
    lost_action = []
    win_actions = []
    action_random = 0
    action_greedy = 0
    episodes = 0
    nb_episodes = 0
    if not args.exploiting:
        try:
            t, memory, epsilon, nb_episodes = pickle.load(open(
                "cache.p", "rb"))
        except:
            logger.warn("Could not load cache file! Starting from scratch.")
    try:
        while True:
            qnetwork.eval()
            if np.random.random() < epsilon:  # epsilon greedy
                action_indx = np.random.randint(nb_actions)
                action_random += 1
            else:
                action_greedy += 1
                tensor = torch.from_numpy(current_state).float().unsqueeze(0)
                with torch.no_grad():
                    qvalues = qnetwork(tensor).squeeze()
                _, action_indx = qvalues.max(-1)
                action_indx = action_indx.item()
            if epsilon > final_epsilon and t > nb_observation:
                epsilon -= (initial_epsilon - final_epsilon) / nb_expolre
            screen, reward, is_gameover, score = game_state.get_state(
                action_indx)
            if is_gameover:
                episodes += 1
                nb_episodes += 1
                lost_action.append(action_indx)
                sum_scores += score
            else:
                win_actions.append(action_indx)
            if score > max_score:
                max_score = score
            if last_time:
                fps = 1 / (time.time() - last_time)
                if fps > desired_fps:
                    time.sleep(1 / desired_fps - 1 / fps)
            if last_time and t % log_frequency == 0:
                logger.info('fps: {0}'.format(1 / (time.time() - last_time)))
            last_time = time.time()
            screen = np.expand_dims(screen, 0)
            next_state = np.append(screen,
                                   current_state[:IMAGE_CHANNELS - 1, :, :],
                                   axis=0)
            if not args.exploiting and (is_gameover
                                        or np.random.random() < ratio_of_win):
                memory.append((current_state, action_indx, reward, next_state,
                               is_gameover))
            if len(memory) > nb_memory:
                memory.popleft()
            if nb_observation > 0 and t > nb_observation:
                indxes = np.random.choice(len(memory),
                                          batch_size,
                                          replace=False)
                minibatch = [memory[b] for b in indxes]
                inputs = tmp_param.new(batch_size, IMAGE_CHANNELS, IMAGE_WIDTH,
                                       IMAGE_HEIGHT).zero_()
                targets = tmp_param.new(batch_size, nb_actions).zero_()
                for i, (state_t, action_t, reward_t, state_t1,
                        is_gameover_t1) in enumerate(minibatch):
                    inputs[i] = torch.from_numpy(state_t).float()
                    tensor = inputs[i].unsqueeze(0)
                    with torch.no_grad():
                        qvalues = qnetwork(tensor).squeeze()
                    targets[i] = qvalues
                    if is_gameover_t1:
                        assert reward_t == -1
                        targets[i, action_t] = reward_t
                    else:
                        tensor = torch.from_numpy(state_t1).float().unsqueeze(
                            0)
                        with torch.no_grad():
                            qvalues = qnetwork(tensor).squeeze()
                        qvalues = qvalues.cpu().numpy()
                        targets[i, action_t] = reward_t + gamma * qvalues.max()
                qnetwork.train()
                qnetwork.zero_grad()
                q_values = qnetwork(inputs)
                loss = loss_fcn(q_values, targets)
                loss.backward()
                optimizer.step()
                total_loss += loss.item()
            current_state = initial_state if is_gameover else next_state
            t += 1
            if t % log_frequency == 0:
                logger.info(
                    "For t {}: mean score is {} max score is {} mean loss: {} number of episode: {}"
                    .format(t, sum_scores / (episodes + 0.1), max_score,
                            total_loss / 1000, episodes))
                logger.info(
                    "t: {} action_index: {} reward: {} max qvalue: {} total number of eposodes so far: {}"
                    .format(t, action_indx, reward, qvalues.max(),
                            nb_episodes))
                tmp = np.array(lost_action)
                dnc = (tmp == 0).sum()
                logger.info(
                    "Lost actions do_nothing: {} jump: {} length of memory {}".
                    format(dnc,
                           len(tmp) - dnc, len(memory)))
                tmp = np.array(win_actions)
                dnc = (tmp == 0).sum()
                logger.info("Win actions do_nothing: {} jump: {}".format(
                    dnc,
                    len(tmp) - dnc))
                logger.info("Greedy action {} Random action {}".format(
                    action_greedy, action_random))
                action_greedy = 0
                action_random = 0
                lost_action = []
                win_actions = []
                if episodes != 0:
                    sum_scores = 0
                total_loss = 0
                episodes = 0
            if t % save_frequency and not args.exploiting:
                env.pause_game()
                with open("cache.p", "wb") as fh:
                    pickle.dump((t, memory, epsilon, nb_episodes), fh)
                gc.collect()
                torch.save(
                    {
                        "qnetwork": qnetwork.state_dict(),
                        "optimizer": optimizer.state_dict()
                    }, checkpoint_path)
                env.resume_game()
    except KeyboardInterrupt:
        if not args.exploiting:
            torch.save(
                {
                    "qnetwork": qnetwork.state_dict(),
                    "optimizer": optimizer.state_dict()
                }, checkpoint_path)
            with open("cache.p", "wb") as fh:
                pickle.dump((t, memory, epsilon, nb_episodes), fh)
コード例 #6
0
class DQNAgent():
    """Interacts with and learns from the environment."""

    def __init__(self,
                 state_size,
                 action_size,
                 buffer_size,
                 batch_size,
                 gamma,
                 tau,
                 lr,
                 hidden_1,
                 hidden_2,
                 update_every,
                 epsilon,
                 epsilon_min,
                 eps_decay,
                 seed
                 ):
        """Initialize an Agent object.
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.buffer_size = buffer_size
        self.batch_size = batch_size
        self.gamma = gamma
        self.tau = tau
        self.lr = lr
        self.update_every = update_every
        self.seed = random.seed(seed)
        self.learn_steps = 0
        self.epsilon = epsilon
        self.epsilon_min = epsilon_min
        self.eps_decay = eps_decay

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size, seed, hidden_1, hidden_2).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size, seed, hidden_1, hidden_2).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=lr)

        # Replay memory
        self.memory = ReplayBuffer(self.action_size, self.buffer_size, self.batch_size, self.seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0


    def step(self, state, action, reward, next_state,  done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % self.update_every
        if self.t_step == 0:
            # Sample if enough samples are available
            if len(self.memory) > self.batch_size:
                experiences = self.memory.sample()
                self.learn(experiences)

    def act(self, state):
        """Returns actions for given state as per current policy.
        Params
        ======
            state (array_like): current state
        """
        self.epsilon = max(self.epsilon*self.eps_decay, self.epsilon_min)

        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > self.epsilon:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences):
        """Update value parameters using given batch of experience tuples.
        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # Get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)
        # Compute Q targets for current states
        Q_targets = rewards + (self.gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        self.learn_steps += 1

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target)

    def soft_update(self, local_model, target_model):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(self.tau * local_param.data + (1.0 - self.tau) * target_param.data)
コード例 #7
0
class PrioritizedDQNAgent():
    """Interacts with and learns from the environment."""

    def __init__(self,
                 state_size,
                 action_size,
                 buffer_size,
                 batch_size,
                 gamma,
                 tau,
                 lr,
                 lr_decay,
                 update_every,
                 update_mem_every,
                 update_mem_par_every,
                 experience_per_sampling,
                 seed,
                 epsilon,
                 epsilon_min,
                 eps_decay,
                 compute_weights,
                 hidden_1,
                 hidden_2,
                 ):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.buffer_size = buffer_size
        self.batch_size = batch_size
        self.gamma = gamma
        self.tau = tau
        self.lr_decay = lr_decay
        self.update_every = update_every
        self.experience_per_sampling  = experience_per_sampling
        self.update_mem_every = update_mem_every
        self.update_mem_par_every = update_mem_par_every
        self.seed = random.seed(seed)
        self.epsilon= epsilon
        self.epsilon_min = epsilon_min
        self.eps_decay = eps_decay
        self.compute_weights = compute_weights
        self.hidden_1 = hidden_1
        self.hidden_2 = hidden_2
        self.learn_steps = 0
        self.epsilon = epsilon
        self.epsilon_min = epsilon_min
        self.eps_decay = eps_decay
        self.compute_weights = compute_weights


        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size, seed, hidden_1, hidden_2).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size, seed, hidden_1, hidden_2).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=lr)
        self.scheduler = StepLR(self.optimizer, step_size=1, gamma=self.lr_decay)


        # Replay memory
        self.memory = PrioritizedReplayBuffer(
                    self.action_size,
                    self.buffer_size,
                    self.batch_size,
                    self.experience_per_sampling,
                    self.seed,
                    self.compute_weights)
        # Initialize time step (for updating every UPDATE_NN_EVERY steps)
        self.t_step_nn = 0
        # Initialize time step (for updating every UPDATE_MEM_PAR_EVERY steps)
        self.t_step_mem_par = 0
        # Initialize time step (for updating every UPDATE_MEM_EVERY steps)
        self.t_step_mem = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_NN_EVERY time steps.
        self.t_step_nn = (self.t_step_nn + 1) % self.update_every
        self.t_step_mem = (self.t_step_mem + 1) % self.update_mem_every
        self.t_step_mem_par = (self.t_step_mem_par + 1) % self.update_mem_par_every
        if self.t_step_mem_par == 0:
            self.memory.update_parameters()
        if self.t_step_nn == 0:
            # If enough samples are available in memory, get random subset and learn
            if self.memory.experience_count > self.experience_per_sampling:
                sampling = self.memory.sample()
                self.learn(sampling)
        if self.t_step_mem == 0:
            self.memory.update_memory_sampling()

    def act(self, state):
        """Returns actions for given state as per current policy.

        Params
        ======
            state (array_like): current state
        """
        self.epsilon = max(self.epsilon*self.eps_decay, self.epsilon_min)

        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
            #print(action_values)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > self.epsilon:
            #print(np.argmax(action_values.cpu().data.numpy()))
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, sampling):
        """Update value parameters using given batch of experience tuples.
        Params
        ======
            sampling (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones, weights, indices  = sampling

        # Get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)
        # Compute Q targets for current states
        Q_targets = rewards + (self.gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)

        if self.compute_weights:
            with torch.no_grad():
                weight = sum(np.multiply(weights, loss.data.cpu().numpy()))
            loss *= weight

        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        self.scheduler.step()
        self.learn_steps += 1
        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target)

        # ------------------- update priorities ------------------- #
        delta = abs(Q_targets - Q_expected.detach()).cpu().numpy()
        self.memory.update_priorities(delta, indices)

    def soft_update(self, local_model, target_model):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(self.tau * local_param.data + (1.0 - self.tau) * target_param.data)
コード例 #8
0
class DQNAgent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, config):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(config["seed"])
        self.seed = config["seed"]
        self.gamma = 0.99
        self.batch_size = config["batch_size"]
        self.lr = config["lr"]
        self.tau = config["tau"]
        self.fc1 = config["fc1_units"]
        self.fc2 = config["fc2_units"]
        self.device = config["device"]
        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size, self.fc1,
                                       self.fc2, self.seed).to(self.device)
        self.qnetwork_target = QNetwork(state_size, action_size, self.fc1,
                                        self.fc2, self.seed).to(self.device)

        self.optimizer = optim.Adam(self.qnetwork_local.parameters(),
                                    lr=self.lr)
        self.encoder = Encoder(config).to(self.device)
        self.encoder_optimizer = torch.optim.Adam(self.encoder.parameters(),
                                                  self.lr)

        # Replay memory

        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, memory, writer):
        self.t_step += 1
        if len(memory) > self.batch_size:
            if self.t_step % 4 == 0:
                experiences = memory.sample(self.batch_size)
                self.learn(experiences, writer)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(self.device)
        state = state.type(torch.float32).div_(255)
        self.qnetwork_local.eval()
        self.encoder.eval()
        with torch.no_grad():
            state = self.encoder.create_vector(state)
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()
        self.encoder.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, writer):
        """Update value parameters using given batch of experience tuples.
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences
        states = states.type(torch.float32).div_(255)
        states = self.encoder.create_vector(states)
        next_states = next_states.type(torch.float32).div_(255)
        next_states = self.encoder.create_vector(next_states)
        actions = actions.type(torch.int64)
        # Get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)
        # Compute Q targets for current states
        Q_targets = rewards + (self.gamma * Q_targets_next * dones)

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        writer.add_scalar('Q_loss', loss, self.t_step)
        # Minimize the loss
        self.optimizer.zero_grad()
        self.encoder_optimizer.zero_grad()

        loss.backward()
        self.optimizer.step()
        self.encoder_optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target)

    def soft_update(self, local_model, target_model):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(self.tau * local_param.data +
                                    (1.0 - self.tau) * target_param.data)

    def save(self, filename):
        """
        """
        mkdir("", filename)
        torch.save(self.qnetwork_local.state_dict(), filename + "_q_net.pth")
        torch.save(self.optimizer.state_dict(),
                   filename + "_q_net_optimizer.pth")
        torch.save(self.encoder.state_dict(), filename + "_encoder.pth")
        torch.save(self.encoder_optimizer.state_dict(),
                   filename + "_encoder_optimizer.pth")
        print("Save models to {}".format(filename))