コード例 #1
0
def train(labellist, batch_size, train_number_epochs, learning_rate, round,
          device):

    train_dataset = SiameseDataset('images.txt', labellist,
                                   transforms.ToTensor())
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=batch_size,
                                  shuffle=True)

    # training
    net = SiameseNetwork().to(device)
    criterion = ContrastiveLoss()
    optimizer = optim.Adam(net.parameters(), lr=learning_rate)

    counter = []
    loss_history = []
    iteration_number = 0

    for epoch in range(train_number_epochs):
        total_loss = 0
        start_time = datetime.now()
        for i, data in enumerate(train_dataloader):
            img0, img1, label = data
            img0, img1, label = img0.to(device), img1.to(device), label.to(
                device)

            optimizer.zero_grad()
            output1, output2 = net(img0, img1)
            loss_contrastive = criterion(output1, output2, label)
            loss_contrastive.backward()
            total_loss += loss_contrastive.item()
            optimizer.step()
            if i % 20 == 0:
                iteration_number += 20
                counter.append(iteration_number)
                loss_history.append(loss_contrastive.item())
        end_time = datetime.now()
        print("Epoch number: {} , Current loss: {:.4f}, Epoch Time: {}".format(
            epoch + 1, total_loss / (i + 1), end_time - start_time))

    torch.save(net.state_dict(),
               "parameters/Parm_Round_" + str(round + 1) + ".pth")
    return counter, loss_history
コード例 #2
0
    train, val = random_split(dataset, [n_train, n_val])
    train_loader = DataLoader(train, batch_size=args.batch_size)
    val_loader = DataLoader(val, batch_size=args.batch_size // 4)

    # load backbones
    print("[*] Initializing weights...")
    imagenet_net = ResNet34()
    sketches_net = ResNet34()
    # sketches_net.load_state_dict(torch.load(args.sketches_backbone_weights))
    print("[+] Weights loaded")

    print("[*] Initializing model, loss and optimizer")
    contrastive_net = SiameseNetwork(sketches_net, imagenet_net)
    contrastive_net.to(args.device)
    if args.optimizer == 'sgd':
        optimizer = torch.optim.SGD(contrastive_net.parameters(),
                                    lr=args.lr,
                                    momentum=args.momentum)
    else:
        optimizer = torch.optim.Adam(contrastive_net.parameters(), lr=args.lr)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
        optimizer, T_0=args.t_0)
    contrastive_loss = contrastive_loss()
    cross_entropy_loss = torch.nn.CrossEntropyLoss()
    print("[+] Model, loss and optimizer were initialized successfully")

    if not args.debug:
        wandb.init(project='homework1-cc7221', entity='p137')
        config = wandb.config
        config.model = contrastive_net.__class__.__name__ + '_contrastive'
        config.device = device
siamese_network = SiameseNetwork(config)

autoencoder_file = '/autoencoder_epoch175_loss1.1991.pth'
siamese_file = '/siamese_network_epoch175_loss1.1991.pth'

if config.load_model:
    autoencoder.load_state_dict(torch.load(config.saved_models_folder + autoencoder_file))
    siamese_network.load_state_dict(torch.load(config.saved_models_folder + siamese_file))

autoencoder.to(device)
autoencoder.train()

siamese_network.to(device)
siamese_network.train()

params = list(autoencoder.parameters()) + list(siamese_network.parameters())

optimizer = torch.optim.Adam(params, lr=config.lr, betas=(0.9, 0.999))

transform = transforms.Compose([
    transforms.Grayscale(num_output_channels=1),
    # transforms.RandomCrop(size=128),
    # transforms.RandomRotation(degrees=10),
    transforms.ToTensor(),
])
train_data = torchvision.datasets.ImageFolder(config.data_folder, transform=transform)
train_data_loader = DataLoader(train_data, batch_size=config.batch_size, shuffle=True, drop_last=True)

transform2 = transforms.Compose([
    transforms.RandomCrop(size=128),
    transforms.RandomRotation(degrees=10),
コード例 #4
0
ファイル: train.py プロジェクト: shuuchen/siamese_network
    train=False) if Config.network == 'siamese' else TriMadoriDataset(
        train=False)

# data loaders
train_dataloader = DataLoader(train_dataset,
                              shuffle=True,
                              batch_size=Config.batch_size)
val_dataloader = DataLoader(val_dataset,
                            shuffle=False,
                            batch_size=Config.batch_size)

# models
net = SiameseNetwork() if Config.network == 'siamese' else TripletNetwork()
net = net.to(device)
criterion = ContrastiveLoss() if Config.network == 'siamese' else TripletLoss()
optimizer = optim.Adam(net.parameters(), lr=0.0005)


def train_siamese():
    train_loss_history, val_loss_history = [], []
    lowest_epoch_train_loss = lowest_epoch_val_loss = float('inf')

    for epoch in tqdm(range(Config.train_number_epochs)):
        # training
        net.train()
        epoch_train_loss = 0
        for batch_no, data in enumerate(train_dataloader):
            img0, img1, label = data
            img0, img1, label = img0.to(device), img1.to(device), label.to(
                device)
            optimizer.zero_grad()
コード例 #5
0
    val_loader = DataLoader(val, batch_size=args.batch_size)
    print("[+] Dataset initialized successfully")

    # load backbones
    print("[*] Initializing weights...")
    imagenet_net = ResNet34()
    sketches_net = ResNet34()
    # sketches_net.load_state_dict(torch.load(args.sketches_backbone_weights))
    print("[+] Weights loaded")

    print("[*] Adapting output layers...")

    print("[*] Initializing model, loss and optimizer")
    siamese_net = SiameseNetwork(sketches_net, imagenet_net)
    siamese_net.to(args.device)
    optimizer = torch.optim.Adam(siamese_net.parameters(), lr=args.lr)
    triplet_loss = triplet_loss()
    cross_entropy_loss = torch.nn.CrossEntropyLoss()
    print("[+] Model, loss and optimizer were initialized successfully")

    if not args.debug:
        wandb.init(project='homework1-cc7221', entity='p137')
        config = wandb.config
        config.model = siamese_net.__class__.__name__ + "_triplet"
        config.device = device
        config.batch_size = args.batch_size
        config.epochs = args.epochs
        config.learning_rate = args.lr

    print("[*] Training")
    best_avg_acc = 0
コード例 #6
0
ファイル: main.py プロジェクト: sunshines14/ASD-baseline
 else:
     model = SiameseNetwork(args.embedding_size).to(device)
     summary(model, input_size=[(1025, 126), (1025, 126)])
     start = 1
 # +) loss
 if args.loss == 'nll':
     weight = torch.FloatTensor([1.0, 9.0]).to(
         device)  # weight for loss (spoof:1, genuine:9)
     criterion = nn.NLLLoss(weight=weight)
 elif args.loss == 'cs':
     criterion = ContrastiveLoss()
 elif args.loss == 'tri':
     criterion = TripletLoss()
 # +) optimizer
 if args.optim == 'adam':
     optim = torch.optim.Adam(model.parameters(),
                              lr=args.lr,
                              weight_decay=args.wd)
 # +) scheduler
 scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
     optim,
     'min',
     factor=args.sched_factor,
     patience=args.sched_patience,
     min_lr=args.sched_min_lr,
     verbose=False)
 # +) early stopping
 #early_stopping = EarlyStopping(patience=args.es_patience, verbose=False)
 # +) fine-tuning mode
 if args.fit_mode:
     # +) tensorboardX, log